
A. Implementation Details

A.1. Guidance sampling training

Figure 9: Left: Comparison with Token-Critic w/ fixed CF-guidance scale s = 5, Right: Generated samples with the same text condition
in Figure 1, which show issues with the overall quality.

Figure 10: Generated samples with TCTS trained with no classifier-free guidance (FID-30K: 27.13, MID-L: 12.34).

Classifier-free guidance [20] is a key factor for the image quality of text-to-image diffusion models [26, 33], and also has
been successfully applied to the token-based models [5, 37]. Since classifier-free guidance is used at inference time, it must
also be used during the training process. However, determining the guidance scale during training is a difficult problem. We
found out that either overly high or low guidance scale can deteriorate the training process of TCTS. The training procedure
of TCTS starts with masking random tokens of a real image. Then, a fixed generator reconstructs the image and TCTS is
trained to find the originally masked locations. However, since high guidance scale boosts the reconstruction capacity, TCTS
suffers from finding the masked locations and tends to output a smooth distribution. In Figure 9, the vanilla Token Critic using
fixed higher CF guidance suffers from performance degradation. On the other hand, a lowercase with poor reconstruction
performance provides the model with diverse and easy samples, making the learning process faster and more stable. However,
since a high guidance scale is used during actual inference, the model exhibits very low performance. The samples are in
Figure 10. Therefore, we stochastically sample the guidance scale in the training procedure as a regularization of the difficulty
of the task. This guidance scale controlling method stabilizes training, improves performance, and enables various guidance
scale settings at inference time.

A.2. Frequency Adaptive Sampling

The area where highly detailed information is obtained in Figure 11 has large values in the high-frequency range. It was
observed that as the generating process progressed, the values gradually decreased in all areas, especially in the simplified
areas. Changes were first observed in the areas that were simplified as a priority. In our FAS method, we divided this area
using a threshold, and the visualization of this is shown in Figure 12. This is similar to the object mask or frequency mask that
can be found in [21]. The detailed algorithm is in Algorithm 2.



Step = 0 / 100 Step = 20 / 100 Step = 40 / 100 Step = 60 / 100 Step = 80 / 100 Step = 100 / 100

Figure 11: Visualization of self-attention map. Top: Reconstructed images in each step. Bottom: Visualization of self-attention maps for
each step.

Figure 12: Visualization of self-attention map with threshold Top: Synthesized images. Bottom: Visualization our self-attention masks.
(ϕ = 0.5)

In addition, unlike [21], the self-attention map here uses sigmoid instead of softmax on the values before the softmax calculation
in the original transformer.

map(h)sa = sigmoid(Q
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mapsa = GAP (map(h)sa ) (3)

This is because the VQ diffusion model [13] uses a large embedding dimension of 1024, causing the sum of softmax values to
decrease too much depending on the location. If we only multiply the persistent weight by the low-frequency location without
the process shown in lines 5 and 10 above, the tokens corresponding to the low-frequency location will be more likely to
remain probabilistically during the sampling process, which can unintentionally hinder the generation of the object. Therefore,



Algorithm 2 Frequency Adaptive Sampling
Input: w: persistent weight, mapsa: self-attention map, ϕ: self-attention threshold
Gθ: Generator, Dγ : TCTS model, c: text condition embedding

1: x̂0, mapsa = Gθ(xt, c)
2: maptc = Dγ(x̂0, c)← TCTS probability map
3: At = {i|xi

t =[MASK]}
4: Lt = {i|mapisa < ϕ} ← Low frequency location
5: a = 1 + (w − 1)× (n(AC)÷N)
6: for i ∈ AC

t ∩ Lt do
7: mapitc = mapitc × w
8: end for
9: for i ∈ At do

10: mapitc = mapitc × a
11: end for
12: Return: maptc

multiplying weight "a" in high-frequency locations helps maintain the ratio of low and high-frequency tokens while giving the
effect of setting the persistent weight to 1.

A.3. Hyper-parameter setting

In our experiment, we set the self-attention threshold (ϕ) to 0.45 and the persistent weight to 15 for hyper-parameter setting.
For our learnable TCTS model, we used same architecture in VQ diffusion [13], but we reduced the number of layers from
19 to 16 when using the COCO dataset, and we reduced the hidden embedding size from 1024 to 512 when using the CUB
dataset.

B. Additional Samples
B.1. Over-simplification samples

Figure 13: Over-simplification samples by revocable schedule with long inference steps. Top: Image generation process with a long
inference steps (100 steps). Bottom: Mask-free object editing with long steps, "A dog with his tongue hanging out in a field" to "A bear
with his tongue hanging out in a field"



Figure 14: Oversimplification with long steps in Paella. Recently proposed method Paella (Rampas et al. 2023) uses token
replacement instead of a mask-based approach and could be considered a revocable method. All samples are generated in 100
steps. The numbers denote the relative number of resampling. Left: Custom fixed-like method (×1), Middle: Renoising until
50 steps (×6), Right: Renoising in all steps (×12). Resampling more tokens make the overall pattern of the background image
to be oversimplified. The excessive number of resampling in longer steps results in oversimplification, and these observations
agree with our analysis.

B.2. Mask-free object editing

Figure 15: Mask-free object editing samples with and without cross-attention map weighted sampling. Starting from the image on the
left, the result images every 20 steps of editing with 30% masking ratio. Top: Failure case without weighted sampling, Bottom: Results with
weighted sampling.

In mask-free object editing, it is challenging to change large objects, converting donuts into broccolis for example, with a
low masking ratio. See Figure 15. This is because the distributions of token for each objects are entirely different, and even if
some parts are masked, the surrounding tokens of the original object can still influence the outcome.

Additionally, in the generating process, our model cannot directly find text-misaligned tokens. Even if the text does not
match the current tokens, the TCTS score map is not centered on the misaligned object. Since TCTS does not play a role as a
text-misaligned token detector, resampling of the whole image can lead to significant changes in unnecessary parts, such as the
background. To address this issue, we propose using a cross-attention map to give more weight to sampling around the object
of interest, minimizing unnecessary resampling of backgrounds, which leads to easy editing of the object.



B.3. Image Refinement

Figure 16: Random image samples with additional refinement steps. Top: Original images with uniform sampling in 16 steps, Middle:
Refined images with random noise, Bottom: Refined images with TCTS.

Figure 17: Random image samples by refinement with masking lowest-scoring tokens. Top: Original images with uniform sampling
in 16 steps, Bottom: Refined images with masking TCTS lowest-scoring tokens. As mentioned earlier, since it is regenerated using the
same uniform sampling method, it is difficult to confirm a noticeable improvement in image quality. However, there was an improvement in
performance in terms of FID and MID.



A metal statue of two women sitting on a bench.

A white stove and cabinet inside a kitchen.

A photo of the camera peeking into a dirty bathroom.

A heritage building with big windows and next to a clock tower.

A woman, man, and a dog standing in the snow.

A dog standing on the street next to an RV and motorcycle.

A living room filled with books furniture and a flat screen TV.

A car stopped at the front of the stop light.

Figure 18: Samples generated with TCTS. Four images are generated for each text in 8 steps, 16 steps, 25 steps, 50 steps.

A bird with big 
eyes and brown 
tones all over. 

White underbelly 
and pointed beak.

This bird is black in
color with a black 

beak and black eye 
rings.

A small bird with 
brown wings, a 

prominent yellow 
strip in its eyebrow, 

and yellow and 
brown patterning 
from its throat to 

belly.

This is a bird with 
grey and yellow 
wings, a yellow 
throat, a brown 

cheek patch and a 
black crown.

The bird is grey 
with a grey crown 

and white 
eyebrows with a 

black throat.

Figure 19: Samples generated by TCTS with FAS in 16 steps.

C. Further Analysis on Results
C.1. Performance graph over time

Figure 20 demonstrates that TCTS outperforms other baseline methods in terms of MID and CLIP scores, which are
relevant metrics for text. RR, TCTS, and FAS exhibit superior performance in SOA than Uniform, thus providing evidence
for our analysis that revocable methods offer more opportunities for recovery, leading to the regeneration of missing objects.
Furthermore, the figure illustrates the impact of FAS, which significantly enhances TCTS’s FID while preserving the alignment
between the image and text.



Figure 20: Performance comparison of each method at different steps. In our experiments, we fixed classifier-free guidance to 5. When
we use FAS method, it was possible to lower the FID score while maintaining text alignment.

16 steps

16 steps

16 steps

16 steps

Figure 21: Comparison of our model and the baseline in performance over generation time. In our experiments, we fixed classifier-free
guidance to 5.

We evaluated the speed and quality of our final model against the baseline, Improved VQ-Diffusion [37]. The baseline
method requires three seconds per image to generate an image in 16 steps. As shown in Figure 21, our model surpasses the
baseline in all metrics while maintaining the same generation time.
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