
Supplementary for Towards Open-Set Test-Time Adaptation Utilizing
the Wisdom of Crowds in Entropy Minimization

Jungsoo Lee1,2* Debasmit Das1 Jaegul Choo2 Sungha Choi1†

1Qualcomm AI Research‡ 2KAIST
1{jungsool, debadas, sunghac}@qti.qualcomm.com 2{bebeto, jchoo}@kaist.ac.kr

OursInput Images Ground Truth TENT

: Open-set classes : Predicted as noisy pixels

road swalk build wall fence pole tlight tsign veg terrain

sky person rider car truck bus train mcycle bicycle unlabel

Figure 1: Identifying wrong predictions and open-set samples in test-time adaptation (TTA). During the long-term adaptation,
previous models not only show a large performance degradation but also predict the open-set samples as one of the pre-defined
classes learned during the training phase. By filtering out noisy ones, both wrong and open-set samples, we can (a) prevent
performance degradation and (b) identify unexpected obstacles to prevent accidents immediately. Red boxes indicate the
regions of pixels that include misclassified predictions or open-set classes. In the fourth column, on top of the prediction of
the model trained through our method, we color pixels that are filtered out by our method as black.

A. Further Analysis on Semantic Segmentation
Fig. 1 shows how filtering out noisy samples is important

in semantic segmentation. As mentioned in the main paper,
discarding noisy samples is crucial in two aspects: we can
1) prevent significant performance degradation caused by
noisy samples and 2) immediately identify unknown objects
that could be highly dangerous if not detected. For exam-
ple, TENT [16] predicts the motorcycle (wrong prediction)
or the guardrails (open-set predictions) as roads in the first
and the second rows, respectively. When applying TTA in
real-world applications (e.g., autonomous driving), such an
issue could lead to a serious accident. However, our method
effectively identifies them immediately (black pixels in the
fourth column), which can prevent such accidents.

∗Work done during an internship at Qualcomm AI Research.
† Corresponding author. ‡ Qualcomm AI Research is an initiative of

Qualcomm Technologies, Inc.

Table 1 shows that open-set samples degrade the perfor-
mance of TTA models in semantic segmentation. For the
analysis, we compare the performance of TENT [16] and
that of TENT trained without the backpropagation of the
open-set pixels. We use the ground truth labels and filter
out the open-set pixels. As shown, TENT achieves better
performance without the backpropagation of the open-set
pixels compared to the original performance. Such a result

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Average
Method Cityscapes BDD-100K Mapillary

TENT [16] 46.73 29.59 35.69 37.34
TENT w/o open-set [16] 47.04 31.12 38.66 38.94
+ Ours 46.76 (+0.03) 30.55 (+0.96) 43.42 (+7.73) 40.24 (+2.90)

Table 1: Effect of removing open-set samples in semantic
segmentation. We filtered out open-set pixels using ground-
truth labels for TENT. We observe performance gain com-
pared to the original performance of TENT.



Method ImageNet-C AverageClosed Open

Source [18] 81.99 81.99 81.99
BN Adapt [12] 68.49 69.65 69.07

TENT [16] 99.71 99.72 99.72
+ Ours 65.62 (-34.09) 67.78 (-31.94) 66.70 (-33.02)

SWR [3] 65.20 68.40 66.80
+ Ours 64.35 (-0.85) 66.33 (-2.07) 65.34 (-1.46)

(a) Error rates after 10 rounds of adaptation.

Method ImageNet-C AverageClosed Open

Source [18] 81.99 81.99 81.99
BN Adapt [12] 68.49 69.65 69.07

TENT [16] 95.79 97.53 96.66
+ Ours 60.82 (-34.97) 64.33 (-33.20) 62.58 (-34.08)

SWR [3] 66.59 69.02 67.81
+ Ours 65.29 (-1.30) 66.86 (-2.16) 66.08 (-1.73)

(b) Error rates after 1 round of adaptation.

Table 2: Comparisons on ImageNet-C. We note the performance gain by reduced error rates.

Method CIFAR-10-C CIFAR-100-C Memory
(MB)

Time
(ms)(a) (b) (c) (a) (b) (c) (MB) (ms)

TENT [16] 56.00 45.84 45.84 45.20 42.34 42.34 556 18.38
CoTTA [17] 31.28 75.97 83.19 41.40 94.52 97.43 36442 379.49

TENT + Ours 20.16 14.10 14.10 33.39 38.62 38.62 565 26.62

(a) Image classification

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Average
Method Cityscapes BDD-100K Mapillary

TENT [16] 46.73 29.59 35.69 37.34
CoTTA [17] 41.03 26.42 40.03 33.23
TENT+ Ours 46.76 (+0.03) 30.55 (+0.96) 43.42 (+7.73) 40.24 (+2.90)

(b) Semantic Segmentation

Table 3: Comparison between our method and CoTTA [17]. We show the results of our method applied to TENT. We perform
better than CoTTA even with a substantially smaller amount of memory usage and time consumption.

again demonstrates that addressing open-set samples is cru-
cial for practical TTA. Note that our approach still outper-
forms TENT adapted with open-set samples filtered out af-
ter a long-term adaptation (e.g., Mapillary). This is mainly
due to the fact that our method discards the wrong predic-
tions well in addition to the open-set samples.

B. Comparisons on ImageNet-C

In Table 2, we also verify the effectiveness of our method
on a large-scale dataset, ImageNet-C [7]. Due to the fact
that experimentation on ImageNet-C is time consuming, we
simulate the long-term adaptation with 10 rounds instead
of the 50 rounds used in the main paper. We evaluate un-
der continuously changing target domains without resetting
the model between each domain. We use the batch size
of 64 and the learning rate of 0.00025 with the SGD op-
timizer [14], following the previous studies [16, 11, 3]. We
observe that our method again consistently improves the
TTA performance on existing baseline models in closed-set
and open-set settings with short-term and long-term adap-
tation. Regarding SWR [3], we observe a significant per-
formance drop of SWR when utilizing the adapted model
of the previous iteration for the regularization. Therefore,
we use the source pretrained original model, θo, for the reg-
ularization. Other hyper-parameters are set as the default
values.

C. Comparisons with CoTTA

We also compare our method with CoTTA [17], another
seminal work in the continual test-time adaptation. Ta-
ble 3 compares the performances of image classification
and semantic segmentation and the resource costs between
CoTTA and our method applied to TENT [16]. As shown,

although our method utilizes a significantly smaller amount
of memory usage and time consumption, we achieve bet-
ter performance in both image classification and semantic
segmentation. We describe the results in detail.

C.1. Image Classification

We observe that CoTTA [17] shows performance vari-
ations depending on the hyper-parameter pth, which is a
threshold to decide whether to use ensembled predictions or
a single prediction in CoTTA. However, we found it chal-
lenging to find adequate pth for CoTTA with the model ar-
chitecture used in our work (i.e., WideResNet40 [18] for
both CIFAR-10-C and CIFAR-100-C). Although the sup-
plementary of CoTTA illustrates how to find pth, we could
not obtain identical values by using the architecture used
in CoTTA even with the description. Therefore, we report
the comparisons between CoTTA and our method with the
following experimental setups: a) architectures used in the
CoTTA paper (i.e., WideResNet28 [18] for CIFAR-10-C
and ResNeXt-29 for CIFAR-100-C) with their default pth
values, b) architectures used in our main paper with their

Method Memory (MB) Time (ms)
TENT [16] 2714 529
SWR [3] 5969 625

CoTTA [17] 20276 4499
TENT [16] + Ours 3036 685

Table 4: Comparisons on memory usage (MB), and time
consumption (ms) on semantic segmentation. We evaluate
with DeepLabV3Plus-ResNet-50 [2]. For memory usage,
we use the batch size of 2. For the time, we report the
average time after 5000 trials with the image resolution of
3×800×1455 on NVIDIA RTX A5000.



default pth values, c) architectures used in our main paper
with pth values we found by following the description of the
supplementary of CoTTA. Table 3a shows that our method
outperforms CoTTA in all three cases even with a substan-
tially smaller amount of memory usage and time consump-
tion. For the experiments, we use the official repository of
CoTTA1.

C.2. Semantic Segmentation

Regarding semantic segmentation, we evaluate CoTTA
with continuously changing target domains with a model
pretrained on GTAV, as done in the main paper. While
TENT [16] and our method show performance gains by us-
ing TTN [11], CoTTA achieves better performance by uti-
lizing batch normalization with the test statistics (i.e., TBN)
than by using TTN. Therefore, we report the performance
of CoTTA using the TBN and the results of TENT and ours
using TTN. In Table 3b, we again observe that our method
outperforms CoTTA with real-domain shifts in semantic
segmentation.

Additionally, we compare the memory usage and time
consumption of our method applied to TENT and other
baseline models on semantic segmentation in Table 4. As
shown, our method accompanies a negligible amount of re-
source cost. For example, while our method outperforms
CoTTA, we accompany a substantially smaller amount of
resource cost compared to CoTTA.

D. Further Details on Experimental Setup
D.1. Datasets

Image classification For constructing SVHN-C and
Imagenet-O-C, we apply corruption types used for CIFAR-
10/100-C and TinyImagnet-C by using the official code2 of
Hendrycks [7]. Since the image sizes of Imagenet-O [9] and
TinyImageNet [10] are different, we resize the resolution of
Imagenet-O images to 64×64. Among the 5 severity levels,
we use corruption level 5, the most corrupted version. Fig. 2
shows the example images of the datasets used in our work.
Semantic segmentation For the experiments with continu-
ously changing domains, we use the train sets of each target
domain in order to conduct experiments with a long-term
adaptation without using multiple rounds. Note that each
target domain includes a different number of images. For
example, Cityscapes, BDD-100K, and Mapillary include
2975, 7000, and 18000 images, respectively. Due to this
fact, for showing the mIoU changes in Table 3b of the main
paper, we evaluate models an equal number of times (i.e.,
20 times) for each target domain, not after certain steps.
For the experiment with a fixed target domain over multiple
rounds, we use the validation sets of each target domain.

1https://github.com/qinenergy/cotta
2https://github.com/hendrycks/robustness

(a) Closed-set (b) Open-set

Figure 2: Examples of datasets used in our work. We use
CIFAR-10-C and SVHN-C for the images. In the closet-set
TTA, all images in the mini-batch only include the covariate
shift (i.e., domain shift). On the other hand, in the open-
set TTA, half of the images in the mini-batch only include
covariate shift while the other half includes both covariate
shift and semantic shift (i.e., open-set samples).

D.2. Baselines

Conjugate [5] Conjugate pseudo labeling was recently pro-
posed on the observation that conjugate functions are ap-
proximate to the optimal loss function. We use the official
codes3 of Conjugate [5].
GCE [19] Generalized Cross Entropy (GCE) loss was first
introduced to address the noisy labels in image classifica-
tion. It emphasizes the learning of correct samples by im-
posing high weights on the gradients of the samples achiev-
ing low loss values, which are highly likely to be correctly
annotated. Following Conjugate [5], we use GCE as the
baseline model to show that simply applying existing noisy-
labeling studies does not guarantee preventing the error ac-
cumulation in TTA. Since the official repository of Conju-
gate includes GCE codes, noted as RPL, we use the same
codes in our work.
EATA [13] EATA4 filters out samples that achieve loss val-
ues higher than a pre-defined static threshold and utilizes
the fisher regularization to prevent catastrophic forgetting.
For the fisher regularization, the original paper utilizes the
test set of the source distribution to obtain the weight impor-
tance w(θ). However, we believe that such an assumption is
not valid since the currently widely used corrupted test sets
apply the corruptions to the test samples of the source dis-
tribution. In other words, such an approach necessitates the
test samples to obtain the weight importance before encoun-
tering the test samples. Therefore, we use the train set of the
source distribution to obtain the weight importance. For the
fisher coefficient, we use 1 for CIFAR-10/100-C and 2000
for TinyImageNet-C, which are the default values reported
in the main paper. For applying our method to EATA, we
only replace the filtering method and utilize the fisher regu-
larization.
SWR [3] SWR proposes 1) updating domain-sensitive
weight parameters more than the insensitive ones and 2)
aligning the prototype vectors of the source and the tar-

3https://github.com/locuslab/tta conjugate
4https://github.com/mr-eggplant/EATA

https://github.com/qinenergy/cotta
https://github.com/hendrycks/robustness
https://github.com/locuslab/tta_conjugate
https://github.com/mr-eggplant/EATA


get distributions [3]. Since SWR does not have an official
repository, we re-implemented the codes and report the re-
sults.

D.3. Implementation Details

Image classification For the image classification on
CIFAR-10/100-C, we mainly use WideResNet40 [18]
which applied the AugMix [8] during the pre-training stage,
following the previous recent TTA studies [11, 3, 15]. The
pretrained model is available from RobustBench [4]. For
the TinyImageNet-C, we use ResNet50 [6]. We pretrained
ResNet50 for 50 epochs with a batch size of 256 and a
learning rate of 0.01 with cosine annealing applied using the
SGD optimizer [14]. We set λmax = 0.5 for experiments
on SWR and λmax = 0.25 for the rest of the experiments.
Semantic segmentation For all semantic segmentation
experiments which utilize the backpropagation, we use
TTN [11] since it brings further performance gain com-
pared to using TBN. For applying our method on seman-
tic segmentation, we use a relaxed version: we select pixels
achieving ŷco − ỹco ≥ −0.2. For applying our method on
SWR, we reduce the coefficient of the mean entropy max-
imization loss (λmax) from 0.5 to 0.2. The main reason is
that the mean entropy maximization works as regularization
and reduces the effect of entropy minimization loss. How-
ever, since our work improves the quality of entropy min-
imization, the mean entropy maximization rather hampers
further performance gain from our method. By reducing
the coefficient of mean entropy maximization, our method
improves the semantic segmentation performance. Such an
observation again demonstrates that our method improves
the quality of the entropy minimization loss. We set other
hyper-parameters as the default values.

E. Further Details on Resource Costs
We illustrate how we compute the resource costs includ-

ing memory usage and time consumption. For memory
usage, as mentioned in the main paper, we use the offi-
cial code provided by TinyTL [1]. Note that the activa-
tion size occupies memory usage more than the parameter
size [1, 15]. For ENT, which updates all parameters, we
add the parameter size and activation size of all parame-
ters. For TENT [16], which updates the affine parameters
in the batch normalization layers, we only add the param-
eter size and activation size of the affine parameters. For
SWR [3], which updates all parameters and utilizes an ad-
ditional model for the regularization, we add the parameter
size of the whole model parameters in addition to the mem-
ory usage of ENT. For EATA [13], which also utilizes an
additional model for the fisher regularization, we only add
the parameter size of the affine parameters in addition to the
memory usage of TENT. For our method applied to TENT,
in addition to the memory usage of TENT, we add 1) the pa-

Method CIFAR-10-C CIFAR-100-C TinyImageNet-C

Source [18] 18.27 46.75 76.71
BN Adapt [12] 14.49 39.26 61.90

TENT [16] 45.84 42.34 98.10
+ Ours (logit) 33.46 (-12.38) 72.08 (+29.74) 92.24 (-5.86)

+ Ours (softmax) 14.10 (-31.74) 38.62 (-3.72) 60.87 (-37.23)

Table 5: Variant of our method. We observe that utilizing
the softmax outputs outperforms utilizing the logit values.

rameter size of all parameters and 2) the parameter size of
the output tensors. We add the parameter size of all param-
eters since we need the whole model parameters in order
to compute ỹ. Also, since we utilize ỹ, we add the mem-
ory of the output tensors that is negligible compared to the
parameter size of the whole model.

F. Variant of Proposed Method
To compare the prediction values between θa and θo, our

method utilizes the probability values of the softmax out-
puts. In Table 5, we also analyze our method by using the
logit values instead of the softmax values. We observe that
utilizing logit values fails to bring large performance gains
compared to using the softmax values. The main reason is
that the logit values generally increase regardless of the cor-
rect or wrong samples. However, such an issue is not found
in the softmax outputs since the values are normalized to
sum-to-one vectors.



References
[1] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl:

Reduce memory, not parameters for efficient on-device
learning. NeurIPS, 2020. 4

[2] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, 2018. 2

[3] Sungha Choi, Seunghan Yang, Seokeon Choi, and Sun-
grack Yun. Improving test-time adaptation via shift-agnostic
weight regularization and nearest source prototypes. ECCV,
2022. 2, 3, 4

[4] Francesco Croce, Maksym Andriushchenko, Vikash Se-
hwag, Edoardo Debenedetti, Nicolas Flammarion, Mung
Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a
standardized adversarial robustness benchmark. In NeurIPS,
2021. 4

[5] Sachin Goyal, Mingjie Sun, Aditi Raghunathan, and Zico
Kolter. Test-time adaptation via conjugate pseudo-labels,
2022. 3

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 4

[7] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. ICLR, 2019. 2, 3

[8] Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph,
Justin Gilmer, and Balaji Lakshminarayanan. AugMix: A
simple data processing method to improve robustness and
uncertainty. ICLR, 2020. 4

[9] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. Natural adversarial examples. CVPR,
2021. 3

[10] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition
challenge. 2015. 3

[11] Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and Sungha
Choi. TTN: A domain-shift aware batch normalization in
test-time adaptation. In ICLR, 2023. 2, 3, 4

[12] Zachary Nado, Shreyas Padhy, D Sculley, Alexander
D’Amour, Balaji Lakshminarayanan, and Jasper Snoek.
Evaluating prediction-time batch normalization for robust-
ness under covariate shift. arXiv preprint arXiv:2006.10963,
2020. 2, 4

[13] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen,
Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient test-
time model adaptation without forgetting. ICML, 2022. 3,
4

[14] Sebastian Ruder. An overview of gradient descent optimiza-
tion algorithms. arXiv preprint arXiv:1609.04747, 2016. 2,
4

[15] Junha Song, Jungsoo Lee, In So Kweon, and Sungha Choi.
Ecotta: Memory-efficient continual test-time adaptation via
self-distilled regularization. CVPR, 2023. 4

[16] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. ICLR, 2021. 1, 2, 3, 4

[17] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Con-
tinual test-time domain adaptation. In CVPR, 2022. 2

[18] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. BMVC, 2016. 2, 4

[19] Zhilu Zhang and Mert R. Sabuncu. Generalized cross en-
tropy loss for training deep neural networks with noisy la-
bels. In NeurIPS, 2018. 3


