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A. Experimental Details
A.1. Datasets

We evaluate the effectiveness of our proposed framework
on several benchmark datasets including Digits, Office-31,
Office-Home, and VisDA for natural distribution shift sce-
narios. Additionally, we conduct experiments on synthetic
distribution shift scenarios by employing CIFAR-10-C and
CIFAR-100-C datasets.

Digits. We conducted experiments on smaller Digits
datasets: MNIST [19], USPS [15], and SVHN [24]. These
datasets comprise labeled images of digits ranging from 0
to 9. MNIST dataset comprises 60K training images and
10K test images, while USPS dataset contains 7,291 train-
ing images and 2,007 test images. SVHN dataset comprises
73,257 training images and 26,032 test images. All images
are resized to 32×32 during training and testing. We con-
sidered all six cross-domain tasks, including the challenging
MNIST→SVHN and MNIST→USPS scenarios.

Office-31. We also evaluate Office-31 [26] datasets. The
Office-31 dataset contains 4,652 images, similar to Ima-
geNet [4], distributed across 31 objects from three distinct
domains, namely, Amazon (A), DSLR (D), and Webcam
(W), with 2,817, 498, and 795 images, respectively. For
training and testing, we resized each domain set to 224×224
after splitting it into a development set (90%) and a holdout
set (10%). We evaluated all six source-target combinations.

Office-Home. The Office-Home [27] dataset consists of
15,500 high-resolution images belonging to 65 categories
from four distinct domains: Artistic images (Ar), Clip Art
(Cl), Product images (Pr), and Real-World images (Rw). In
this study, we considered all possible 12 UDA tasks.

VisDA. The VisDA [25] dataset contains a large-scale
collection of complex images from 12 categories that in-
clude 152K synthetically rendered images from different

angles and lighting configurations and 55K real-world im-
ages that are sampled from MSCOCO [22]. These images
are resized to 224×224 for training and testing. Due to
its more practical sim-to-real UDA problem, this dataset is
suitable for more challenging cross-domain benchmarks.

CIFAR-10/CIFAR-10-C and CIFAR-100/CIFAR-100-C.
CIFAR-10 and CIFAR-100 datasets [18] consist of 50K
training images and 10K test images with 32×32 dimen-
sions per image, and ten and hundred mutually exclu-
sive classes, respectively. CIFAR-10-C and CIFAR-100-
C datasets [14] introduce 19 types of artificial corruptions
such as blur, noise, weather, and digital categories, creat-
ing corresponding corrupted subsets. These CIFAR-10 to
CIFAR-10-C and CIFAR-100 to CIFAR-100-C settings are
quite suitable for measuring the UAE performance against
diverse synthetic distribution shift scenarios.

A.2. Network Architectures

For Digits experiments, we used a LeNet variant for Dig-
its with a convolutional kernel size of 5×5 and applied
ReLU function after each Batch Normalization (BN) layer.
The entire architecture consists of: Conv(3, 64) - BN(64)
- Maxpool(2) - Conv(64, 64) - BN(64) - Maxpool(2) -
Conv(64, 128) - BN(128) - Linear(8192, 3072) - BN(3072)
- Linear(3072, 2048) - BN(2048) - Linear(2048, 10).

For CIFAR-10 / CIFAR-10-C and CIFAR-100 / CIFAR-
100-C datasets, we employed the ResNet18 backbone,
while we used the ResNet50 backbone for Office-31 and
Office-Home datasets. The ResNet101 backbone was ap-
plied for VisDA. The complete network comprises each
backbone (i.e. from the initial layer to the global average
pooling layer) and two additional fully connected layers.

A.3. Baselines

We consider Proxy Risk (Proxy) [2], Difference of Con-
fidence (DoC) [11], Random Initialization (RI) [1], Rep-
resentation Matching (RM) [1], and Generalization Dis-
agreement Equality (GDE) [16] as our baselines. We re-
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implement all baselines and conducted a comparative analy-
sis under identical experimental conditions. It is worth not-
ing that while these baselines necessitate access to source
samples, our framework only requires unlabeled target sam-
ples when estimating the target risk of the source model.

A.4. Training Configurations

Source Model Training. During the source model train-
ing, we train the models from the scratch for the smaller
networks such as the LeNet variant (Digits) and ResNet18
(CIFAR-10 and CIFAR-100). We leverage ImageNet pre-
trained initialization for ResNet50 (Office-31 and Office-
Home) and ResNet101 (VisDA) to compensate for the small
dataset size and to reduce time to converge, respectively.

Referring to the random initialization strategy of [16]
combined by additional hyperparameter selection, we train
ten source models for each source dataset independently,
by applying different augmentations out of {weak augmen-
tation, strong augmentation} to input, different initial seeds
for random number generation selected from {2021, 2022,
2023, 2024, 2025}, and different learning rates if necessary.
Note that MNIST and USPS are trained only with strong
augmentation as the challenging M→S and U→S UDA on
source models trained with weak augmentation often lead to
collapsed results. Specifically, standard random cropping,
rotating, flipping, and color jittering are applied for weak
augmentation (on Digits, flipping is not used) whereas we
employ RandAugment [3] with Cutout [7] for strong aug-
mentation.

Each source model of Digits is trained for 50 epochs with
a mini-batch size of 500 while the learning rate is initially
set to one of {0.1, 0.05} and steps down by ×0.1 after 40-
th epoch. For CIFAR-10 and CIFAR-100, we train from
scratch for 300 epochs with a mini-batch size of 200 while
the learning rate is initially set to 0.1 and steps down by
×0.1 every 80-th epoch. We fine-tune the source models of
Office-31, Office-Home, and VisDA using ImageNet pre-
trained backbone with learning rate schedules ranging from
0.001 to 0.00001 on cosine annealing for 1200, 1200, and
400 iterations, respectively, with reference to a recent model
training tricks [13]. We set the mini-batch size to 192, 192,
and 132 for Office-31, Office-Home, and VisDA, respec-
tively. For CIFAR-10 and CIFAR-100, we apply Adam [17]
optimizer whereas SGD with momentum 0.9 and weight de-
cay 0.0001 is applied for the other models.

During investigation on straightforward pseudo-labeling
(Sec 3 in the main manuscript), we trained 192 ResNet50
source models by combining six different learning rates,
two input augmentation options, two optimizers among
{Adam, SGD with momentum}, two label smoothing op-
tions and four different training epochs.

Source-Free UDA. In the proposed SF-DAP framework,
we first adapt the given source model to the target distri-
bution by a source-free UDA method such as SHOT [21],
FAUST [20], or the proposed PAFA. We apply the default
hyperparameters that are used by each method unless oth-
erwise stated. The same random seeds are applied that are
used for the source model training. Two types of augmenta-
tions are employed to enable perturbation in PAFA: stan-
dard random crop-rotate-flip and color jittering for weak
augmentation (no flipping is used on Digits), and RandAug-
ment [3] with Cutout [7] for strong augmentation. In PAFA,
we simply set α to 0.5 without any intensive tuning effort
since this value leads to a viable performance.

In all source-free UDA methods, the common training
configurations are as follows: For Digits and Office-31 set-
tings, we apply a fixed learning rate of 0.0002. VisDA is
trained by a learning rate from 0.0005 to 0.00005 scheduled
with cosine annealing, whereas a learning rate from 0.001
to 0.0001 scheduled with cosine annealing is applied to
CIFAR-10→CIFAR-10-C and CIFAR-100→CIFAR-100-C
scenarios. Mini-batch size is set to 500 in Digits, CIFAR-
10-C, and CIFAR-100-C target domains while 92 in Office-
31 and 64 in VisDA are applied. The determination of the
number of UDA epochs is based on the point of loss satu-
ration within 60 epochs for Digits, Office-31, and Office-
Home datasets, and 4, 20, and 20 epochs for VisDA,
CIFAR-10-C, and CIFAR-100-C datasets, respectively.

A.5. Evaluation Protocol

We repreat experiments on ten source models trained in-
dependently and present the mean and standard deviation of
the mean absolute errors (MAE) for 63 scenarios distributed
across six groups. Given the variability in the number of
tasks within each group, we computed two types of aver-
ages to provide a comprehensive evaluation of the estima-
tion performance across benchmark groups. The first aver-
age, referred to as the micro average, represents the overall
average. The second average, presented as the macro aver-
age, considers the mean of the average MAE values within
each group, allowing for a more balanced assessment of the
estimation performance.

We evaluate each baseline according to the definition
of the risk estimator as reported in each paper. We uti-
lize Ex∼DS

[maxk∈Y hk
S(x)] − Ex∼DT

[maxk∈Y hk
S(x)] for

DoC [11], whereas maxh′∈P εT (hS , h
′) is used for Proxy

[2] where P is a set of check models. For GDE [16], we
apply EhS ,h′

S∈§[εT (hS(x), h
′
S(x))] where § is a set of sib-

ling source models that includes the source model of in-
terest for evaluation. For RI and RM [1], iterative self-
trained ensemble of models {hi}Ni=1 as a pseudo-label is
used to estimate εT (hS). For a fair comparison, five pairs
of sibling source models are used for GDE experiments
and five independently-adapted check models are used for



Table 1. Full UAE benchmark results on natural distribution shift scenarios (MAE, %). Bold for the best and bold-italic for the next best.
source access approach source-free approach (ours)

datasets source target DoC [11] Proxy [2] RI [1] RM [1] GDE [16] SF-DAP (ADV) SF-DAP (AAP)

Digits

MNIST USPS 0.63±0.02 0.45±0.34 3.87±2.45 0.55±0.25 1.45±0.02 1.17±0.05 0.05±0.04
MNIST SVHN 29.14±0.21 20.08±2.64 7.31±1.29 28.07±1.70 58.46±0.17 3.02±0.26 5.39±0.21

USPS MNIST 12.83±0.12 6.70±2.87 29.10±2.60 10.16±4.03 33.65±0.10 0.40±0.14 1.25±0.29

USPS SVHN 32.80±0.17 18.97±2.96 9.59±2.04 21.97±3.01 65.20±0.10 6.16±0.21 3.84±0.28
SVHN MNIST 4.08±2.21 6.22±1.93 5.20±3.72 3.28±1.29 2.77±1.95 1.38±0.50 0.99±0.54
SVHN USPS 8.25±1.13 5.35±1.76 1.95±1.67 3.93±0.81 5.24±1.00 0.96±0.72 1.41±0.66

Digits average 14.62±0.80 9.63±1.44 9.50±1.51 11.33±1.36 27.80±0.75 2.18±0.56 2.15±0.58

Office-31

Amazon DSLR 9.50±0.96 1.99±1.60 2.69±2.63 1.49±1.38 8.71±1.40 1.85±1.22 0.96±0.87
Amazon Webcam 8.81±0.86 1.42±0.64 7.82±4.60 2.19±1.35 9.70±1.69 4.43±2.10 1.62±0.98

DSLR Amazon 5.24±3.20 10.47±1.81 11.57±1.93 4.21±2.76 18.80±1.91 9.05±1.78 3.28±1.97
DSLR Webcam 1.82±1.24 0.74±0.88 7.38±1.33 0.62±0.38 1.62±0.36 2.97±0.52 3.08±0.89

Webcam Amazon 3.07±2.26 11.98±3.05 13.29±3.19 7.39±3.63 19.71±1.71 9.56±1.77 5.23±2.03

Webcam DSLR 1.58±1.00 1.22±1.09 9.40±2.03 0.50±0.26 0.22±0.15 0.46±0.24 0.88±0.49

Office-31 average 5.00±1.26 4.64±1.23 8.69±1.62 2.73±1.28 9.79±1.10 4.72±1.13 2.51±1.10

Office-Home

Art Clipart 33.63±0.17 10.03±2.21 17.80±1.86 3.88±2.07 53.08±0.15 8.79±0.24 3.41±0.43
Art Product 28.17±0.31 6.91±1.31 8.85±1.88 2.80±1.37 35.99±0.25 3.83±0.38 0.86±0.24
Art Real-World 25.80±0.23 6.77±2.01 6.60±1.47 1.91±1.13 26.54±0.23 5.75±0.63 1.26±0.57

Clipart Art 31.84±0.37 11.38±2.49 10.06±6.08 1.85±0.99 41.33±0.45 9.32±0.63 6.02±0.74
Clipart Product 30.50±0.31 9.75±2.91 11.54±2.17 2.93±0.94 35.88±0.32 12.59±0.34 7.59±0.38

Clipart Real-World 31.02±0.30 9.94±3.13 12.50±1.15 2.30±1.19 34.22±0.26 11.94±0.41 7.20±0.58

Product Art 18.79±0.28 12.51±2.41 6.56±4.04 6.94±2.23 42.09±0.33 10.51±0.83 8.98±0.65

Product Clipart 25.27±0.35 12.15±2.56 17.79±3.83 7.00±3.17 52.68±0.25 17.12±0.23 11.98±0.43

Product Real-World 14.27±0.19 6.33±1.58 10.80±1.10 2.67±1.06 25.62±0.15 7.00±0.31 3.85±0.63

Real-World Art 19.91±0.07 6.59±0.84 13.04±2.91 4.98±1.50 29.61±0.14 5.44±0.42 3.26±0.41
Real-World Clipart 28.97±0.23 8.80±0.98 20.50±2.07 4.04±2.30 50.49±0.33 8.96±0.38 4.11±0.32

Real-World Product 19.23±0.23 3.79±1.28 9.57±1.51 2.61±0.73 22.69±0.25 3.54±0.32 1.28±0.15
Office-Home average 25.62±0.50 8.75±1.41 12.13±1.58 3.66±1.25 37.52±0.51 8.73±0.65 4.98±0.68
VisDA (Syn-to-Real) 15.72±4.35 8.90±1.71 7.50±4.70 4.41±2.52 29.31±3.73 4.41±1.10 1.73±0.93

Proxy Risk experiments. We did our best to achieve the re-
ported results, but the higher MAE numbers, if any, may
be partially due to our lack of a proper recipe for adjusting
hyperparameters when running baseline approaches.

A.6. Detailed Results

All results of 63 scenarios are presented in Table 1 for
the natural distribution shift scenarios and in Table 2 for the
synthetic distribution shift scenarios.

A.7. Computing Infrastructure

We conduct all experiments using PyTorch and NVIDIA
A100 GPUs.

B. Review on Existing UAE Methods
B.1. Regression-based Approaches

To estimate the accuracy of an already trained model
to unknown unlabeled data, one of the first approaches [6]
draw on the (negative) correlation between the differences
in data distribution and model accuracy, and builds a regres-
sion model from the Frechet distance between a collection

of artificially augmented from the source data and the model
accuracy on these augmented datasets. [5] established the
relation between the rotation estimation task and the classi-
fication task. When the network is trained to optimize both
criteria, they observed a strong correlation between rota-
tion estimation accuracy and classification accuracy. This
observation led to a simple regression-based classification
accuracy estimation approach by fitting a linear mapping
between both accuracies from a collection of datasets syn-
thetically generated from standard datasets [6].

B.2. Confidence-based Approaches

Guillory et al. [11] approaches the problem of accuracy
estimation from the per-sample prediction confidence that
is robust to distributional shifts. They came up with a sim-
ple prediction confidence-based measure called AC (Aver-
age Confidence) and extended it to DoC (Difference of Con-
fidence) measure, which shows improved estimation accu-
racy. In a similar manner, [10] developed a ’score function’
based accuracy estimation that is essentially per-sample
confidence measures from either maximum class probabil-
ity or negative entropy of the class probability. They first



Table 2. Full UAE benchmark results on synthetic distribution shift scenarios (MAE, %).
source access approach source-free approach (ours)

datasets corruptions DoC [11] Proxy [2] RI [1] RM [1] GDE [16] SF-DAP (ADV) SF-DAP (AAP)

CIFAR-10 Gaussian noise 22.33±3.33 11.20±0.31 3.79±1.95 0.78±0.50 4.86±1.48 1.87±0.43 3.08±2.33

to Shot noise 20.42±2.81 10.95±0.31 3.08±1.19 0.52±0.30 3.77±1.44 1.95±0.27 3.31±2.48

CIFAR-10-C Impulse noise 27.94±5.23 12.25±1.04 4.97±2.35 2.81±1.00 8.01±2.03 1.14±0.57 3.37±2.05

Speckle noise 20.49±2.81 10.93±0.23 3.12±1.14 0.68±0.39 3.68±1.41 1.79±0.31 3.04±2.21

Defocus blur 15.79±1.42 9.22±0.82 2.35±0.49 2.48±1.95 1.64±1.20 1.65±0.52 2.86±2.06

Glass blur 19.26±0.51 11.96±1.19 1.72±1.05 2.19±1.69 2.62±1.97 2.20±0.43 3.18±2.66

Motion blur 18.96±1.62 10.93±0.83 2.70±0.29 2.58±1.88 2.16±1.36 1.27±0.32 3.38±1.68

Zoom blur 15.73±1.24 8.88±0.89 2.31±0.69 2.79±1.63 1.45±0.92 1.43±0.81 2.60±1.89

Gaussian blur 16.66±1.57 9.42±0.82 2.64±0.45 2.74±2.24 1.83±1.40 1.55±0.45 2.94±2.08

Snow 19.56±1.71 11.37±0.48 2.31±0.74 1.39±0.55 2.54±0.40 1.71±0.99 3.71±2.19

Fog 19.73±2.88 11.80±1.00 3.92±0.67 2.70±1.65 3.27±2.28 3.14±2.68 2.56±2.35
Frost 18.09±2.01 9.80±0.56 2.81±0.43 2.02±0.76 2.35±0.71 1.40±0.83 2.34±1.85

Brightness 15.17±2.08 8.69±0.49 2.53±0.95 2.26±1.88 1.75±1.17 1.29±0.40 2.79±1.93

Spatter 19.78±3.08 11.48±0.31 3.16±0.61 1.35±1.05 2.66±1.62 2.21±0.85 3.44±2.76

Contrast 23.34±6.17 9.70±1.09 8.86±1.72 4.30±2.72 6.65±4.98 11.66±5.42 2.90±0.59
Elastic transform 16.60±1.30 10.63±1.28 2.11±0.26 2.78±1.33 1.33±0.91 1.87±0.53 2.96±2.44

Pixelate 15.34±1.25 9.16±0.73 1.92±0.34 2.34±1.04 1.19±0.60 1.77±0.36 2.82±2.10

JPEG compression 16.82±1.77 10.29±0.37 2.60±0.25 1.78±1.52 2.02±1.48 2.09±0.96 3.34±2.32

Saturate 17.30±3.34 10.34±0.33 3.83±1.25 2.70±2.39 3.06±1.90 2.39±2.19 3.56±2.55

CIFAR-10 to CIFAR-10-C average 18.91±1.56 10.47±0.83 3.20±0.94 2.17±1.18 2.99±1.24 2.34±1.47 3.06±1.46

CIFAR-100 Gaussian noise 52.05±6.07 22.92±13.56 7.38±4.02 0.70±0.50 7.97±3.11 2.98±1.69 2.48±1.92

to Shot noise 50.05±5.24 19.20±2.71 6.52±2.89 1.17±0.24 6.74±3.08 4.30±2.17 2.88±2.51

CIFAR-100-C Impulse noise 55.92±9.18 39.79±27.47 9.39±5.13 0.55±0.39 10.17±4.00 0.70±0.38 1.52±0.31

Speckle noise 50.30±5.30 19.49±2.58 6.54±2.80 1.16±0.32 6.73±3.11 4.32±2.31 2.70±2.20

Defocus blur 45.08±2.52 30.47±6.06 4.93±1.40 2.61±1.25 4.87±3.13 9.95±3.01 3.06±1.71

Glass blur 48.00±1.40 24.54±0.79 3.50±3.10 0.91±0.40 5.61±1.47 7.07±4.21 2.86±0.88

Motion blur 47.36±2.35 30.12±7.08 4.73±2.31 2.17±0.51 5.56±2.54 9.27±2.32 3.83±2.58

Zoom blur 44.92±2.34 29.26±6.25 4.80±1.23 2.50±1.55 4.45±2.89 8.80±2.46 2.89±2.54

Gaussian blur 46.09±2.53 30.44±6.48 5.04±1.76 2.60±0.88 5.22±3.25 10.12±2.56 3.17±2.93

Snow 49.93±3.06 22.15±0.48 4.60±3.65 1.02±0.33 6.39±1.16 6.32±2.22 1.76±1.06

Fog 51.15±3.62 31.95±9.00 5.58±3.96 2.49±0.73 7.48±3.29 6.51±2.77 1.81±1.03
Frost 48.58±3.36 24.23±10.16 4.77±3.19 1.70±0.28 6.26±1.54 4.03±1.92 1.70±1.16

Brightness 45.06±3.61 23.15±1.78 5.27±1.52 2.47±1.12 4.78±3.13 7.86±2.65 3.71±2.92

Spatter 50.44±4.65 20.59±1.32 5.98±3.33 1.43±0.22 6.65±3.45 5.53±2.33 2.89±2.05

Contrast 52.17±5.73 24.20±13.17 10.12±4.47 3.03±0.52 9.51±6.13 2.18±0.92 11.03±2.70

Elastic transform 45.63±2.60 29.04±1.92 4.57±1.99 2.10±1.51 4.74±2.34 9.61±3.82 2.97±0.49

Pixelate 44.42±2.66 25.03±1.54 4.42±1.67 1.99±1.39 4.58±2.29 8.43±3.69 2.87±1.10

JPEG compression 46.85±3.15 26.38±0.75 5.05±1.87 2.41±1.03 5.19±3.15 8.62±3.34 1.93±1.22
Saturate 50.20±5.78 27.58±1.91 7.68±2.63 3.17±0.22 7.29±4.97 12.80±3.36 6.31±3.47

CIFAR-100 to CIFAR-100-C average 48.64±1.99 26.34±2.46 5.84±1.67 1.90±0.84 6.33±1.75 6.81±1.59 3.28±1.35

calibrate the probability outputs so that they match the ac-
curacy using temperature scaling [12]. Then the key to their
approach is to identify the score function threshold from
the source data that match the source accuracy and apply
the same threshold to the target score function leading to
the target accuracy estimation.

B.3. Disagreement-based Approaches

Nakkiran and Bansal [23] first found that if one train
two networks of identical architecture on two independently
sampled subsets of a dataset, the disagreement rate on test
data linearly correlates with the network’s test accuracy.
Jiang et al. [16] further extends the behavior to two iden-
tical networks trained on the same dataset but with different
random initialization. They verified that this observed cor-



Table 3. Ablation study on various UAE tasks by comparing SF-DAP (ADV), SF-DAP (AAP) and their intermediate configuration. We
report average MAEs(%) in each benchmark group for simplicity. The notation Cadj uncCcls refers to an intermediate configuration that
is identical to SF-DAP (AAP) except that the data volume density factor Cden is not used. Micro average computes the mean of all 63
cross-domain scenarios, whereas macro average represents the mean of average MAE values within the six benchmark groups.

Method Digits Office-31 Office-Home VisDA CIFAR-10-C CIFAR-100-C micro avg. macro avg.
SF-DAP (ADV) 2.18±0.56 4.72±1.13 8.73±0.65 4.41±1.10 2.34±1.01 6.81±1.59 5.15±1.15 4.86±1.00
Cadj uncCcls 2.05±0.61 3.05±1.07 6.44±1.75 3.05±0.86 4.07±1.47 3.83±1.33 4.15±1.39 3.75±1.09

SF-DAP (AAP) 2.15±0.58 2.51±1.10 4.98±0.68 1.73±0.93 3.06±1.46 3.28±1.35 3.33±1.20 2.95±1.01

Table 4. Running time comparison of various methods that require additional training. For GDE and RI, the time for additional training
of the source models is excluded.

Setting GDE [16] RI [1] Proxy [2] RM [1] SF-DAP (ADV) SF-DAP (AAP)
Amazon→DSLR 27s 1m 24s 19m 3s 18m 58s 5m 54s 6m 21s

Amazon→Webcam 48s 2m 35s 30m 25s 30m 50s 9m 58s 10m 49s
CIFAR-10 (average) 13s 1m 20s 6m 43s 5m 30s 4m 40s 4m 55s

relation leads to a disagreement based accuracy estimation
for unlabeled datasets, called GDE. They further established
the necessary conditions for the calibration of the prediction
outputs for the method to work.

B.4. Iterative Ensemble-based Approaches

Chen et al. [1] also extends the disagreement-based ap-
proach with the flavor of the UDA approach. It employs
model ensembles of more than two, where the generated
ensemble serves as the check model (by a majority vote) for
the given source model to be evaluated. The ensembles are
generated by either (1) random initialization (RI), or (2) ran-
dom checkpoints when the models are trained to match the
source and target features (RM), as in the well-known do-
main adaptation training [9]. The approach also improves
accuracy by using pseudo labels generated from the dis-
agreement to be fed back to the training. A slightly earlier
work [2] also uses DIR training to find a check model that
shows maximum disagreement while minimizing the DIR
loss. Then the disagreement rate (called Proxy Risk) ap-
proximates the error of the given source model on the target
data.

C. Further Analysis
C.1. Ablation Study

We conducted an ablation study on various datasets by
comparing SF-DAP (AAP), SF-DAP (ADV), and their in-
termediate configuration as shown in Table 3, where the
magnitude of VAP (ϵ) is computed by ϵ0Cadj uncCcls for
the intermediate configuration. Table 3 demonstrates the
gradual improvement of estimation performance from SF-
DAP (ADV) to SF-DAP (AAP).

C.2. Estimation Time

We compare the runtime of various methods that require
additional training as shown in Table 4. SF-DAP shows
comparable or superior running time to other existing meth-
ods, particularly when compared with RM and Proxy Risk,

Table 5. UAE performance comparison when different UDA
methods are employed. ∗SHOT-IM is applied without the network
augmentation. ∗∗Epistemic uncertainty loss is not applied.

datasets PAFA SHOT∗ FAUST∗∗

Digits 2.15±0.58 3.33±1.63 2.95±1.18

Office-31 2.51±1.10 3.85±1.60 3.79±1.54

Office-Home 4.98±0.68 5.67±1.72 5.75±1.66

VisDA 1.73±0.93 1.10±1.01 1.16±0.95

CIFAR-10 3.06±1.46 4.02±1.45 3.95±1.46

CIFAR-100 3.28±1.35 3.34±1.31 3.39±1.33

micro average 3.33±1.20 4.00±1.49 3.97±1.44

macro average 2.95±1.01 3.55±1.21 3.50±1.16

which also perform UDA during estimation. Once the tar-
get model adaptation is completed, the inference time of
SF-DAP should be almost the same as that of RI. Note that
these results are measured with A100 GPUs.

C.3. Performance with Different UDA Methods

We evaluate some other source-free UDA methods such
as SHOT-IM [21] and FAUST [20] within the proposed
framework. As shown in Table 5, there are no significant
differences between their results, while PAFA shows the
most preferable performance in our SF-DAP framework un-
der both natural and synthetic distribution shift scenarios.
Because of these superior results, we consider PAFA as our
UDA recommendation for the proposed framework. How-
ever, the potential benefits of more diverse source-free UDA
methods are worth exploring in future research that jointly
tune the feature generator with the head classifier.

C.4. Uncertainty Measurement

Recent studies have shown the dropout during inference,
known as Monte Carlo (MC) dropout sampling, is equiv-
alent to an approximation of a deep Gaussian process [8].
In this work, we estimate the predictive uncertainty by us-
ing the standard deviation of multiple (n=10) stochastic for-



(a) Ar→Cl (b) Ar→Pr (c) Ar→Re

(d) Cl→Ar (e) Cl→Pr (f) Cl→Re

(g) Pr→Ar (h) Pr→Cl (i) Pr→Re

(j) Re→Ar (k) Re→Cl (l) Re→Pr
Figure 1. (Best viewed in color) Performance trends of estimation
as UDA progresses are presented for Office-Home benchmarks.
The true risk of the source model on the target data as well as the
risk estimated by SF-DAP (AAP) and SF-DAP (ADV) are repre-
sented by blue, red and orange lines, respectively.

Table 6. UAE performance comparison. RND, ADV, and AAP
denote the perturbation method of the SF-DAP framework. RND
(ens.) uses the ensemble of the five independent RND estimates.

datasets RND RND (ens.) ADV AAP

Digits 4.00±0.51 0.94±0.50 2.18±0.56 2.15±0.58

Office-31 5.93±1.64 3.58±1.14 4.72±1.13 2.51±1.10
Office-Home 2.19±0.70 9.03±0.66 8.73±0.65 4.98±0.68

VisDA 0.85±0.64 7.14±1.25 4.41±1.10 1.73±0.93

CIFAR-10 20.83±2.58 4.32±1.90 2.34±1.01 3.06±1.46

CIFAR-100 17.57±2.09 3.97±1.39 6.81±1.59 3.28±1.35
micro average 12.96±1.92 4.77±1.38 5.15±1.15 3.33±1.20
macro average 8.56±1.17 4.83±1.07 4.86±1.00 2.95±1.01

ward passes that leverage MC dropout. To enhance the ac-
curacy estimation further, future research may explore the
utilization of newly developed uncertainty measures, such
as the balanced entropy, which captures the information bal-
ance between the model and the class label suggested by
[28].

(a) MNIST→SVHN (b) USPS→MNIST (c) Amazon→DSLR

(d) Amazon→Webcam (e) VisDA (f) Impulse noise

(g) Fog (h) Glass blur (i) Snow
Figure 2. (Best viewed in color) Performance trends of estimation
as UDA progresses are presented for some of Digits, Office-31,
CIFAR-10-C, CIFAR-100-C and VisDA benchmarks. (f) and (g)
depict some results in 19 CIFAR-10 → CIFAR-10-C experiments,
whereas (h) and (i) display outcomes in CIFAR-100 → CIFAR-
100-C experiments.

C.5. Ensemble Effect on SF-DAP (RND)

Applying an ensemble to SF-DAP (RND) yields estima-
tion performance similar to or better than that of SF-DAP
(ADV) as presented in Table 6.

As we have shown from RI and RM methods in Table 1
and Table 2, the ensemble approach notably improves the
accuracy estimation performance in general which is com-
parable with the intermediate configuration Cadj uncCcls

shown in Table 3. We interpret that the ensemble approach
can equate to the role of capturing model uncertainty. How-
ever, our consolidated SF-DAP (AAP) shows superior per-
formance and requires fewer computational resources com-
pared to the ensemble method.

C.6. UAE Performance during UDA

We track the performance trend of accuracy estimation
as the proposed source-free UDA, PAFA, progresses to each
target domain. Our proposed framework, SF-DAP, starts
producing accurate estimates surprisingly early and remains
steady throughout the rest of the UDA iterations as illus-
trated in Fig 1 and Fig 2.
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