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Figure 1. Visualization of the undersampling mask M : (a) the cen-
ter cropping mask used in the MRI SR task; and (b) the cartesian
sampling mask used in the MRI reconstruction task.

Figure 2. The structure of the modified U-Net for denoising.

1. Undersampling mask
In figure 1, we visualize the center cropping mask and

the cartesian sampling mask used in our model. Figure (a)
is the center cropping mask [2, 4] used in the MRI SR task,
and figure (b) is the cartesian sampling mask used in the
MRI reconstruction task.

2. The denoising U-Net
In this paper, we employ a variant of U-net as our deep

denoising network. As shown in Figure 2, our denoising
U-Net consists of three encoder blocks and three decoder
blocks. The first two encoder blocks contain three “Conv-
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Table 1. The number of network parameters and average testing
time of recent SOTA multi-contrast MRI SR and reconstruction
methods.

Task Method Parameters Testing Time

CUNet [1] 0.2M 51ms
MCSR [7] 3.5M 18ms

SR MASA [6] 4.0M 52ms
MINet [2] 11.9M 80ms
MCMRSR [4] 3.5M 250ms

MDUNet [11] 5.2M 23ms
Rec MTrans [3] 86.1M 47ms

Restormer [12] 26.1M 83ms

Ours-S 1.4M 41ms
Ours-L 5.7M 93ms

ReLU” layers and a “Conv” layer with stride 2 for down-
sampling. The third encoder block contains three “Conv-
ReLU” layers. The first two decoder blocks contain a “De-
conv” layer for upsampling and three “Conv-ReLU” layers.
The third encoder block contains three “Conv-ReLU” lay-
ers. Besides, skip connections are used to fuse the infor-
mation between the encoders and decoders. To reduce the
number of network parameters and the effect of overfitting,
the denoising networks in different iteration stages share the
same network parameters.

3. Model efficiency analysis
In our main manuscript, we have compared the perfor-

mance and the parameter numbers of our methods with ex-
isting SOTA methods. In Table 1, we further report the run-
ning times of them. The running times are tested on an
RTX3090 GPU. Compared with MINet [2], MCMRSC [4]
and Restormer [12], our MC-VarNet-S has advantages in
terms of performance, number of parameters, and compu-
tation. Since our method is based on iterative unrolling,
the running time increases with the number of iterations.
MCSR [7] and MTrans [3] run faster than our MC-VarNet-
S, however, our model has great advantages in terms of



model performance and the number of parameters. Over-
all, our model can better balance the model performance,
the number of parameters, and the computational complex-
ity compared with existing SOTA methods.

4. MC-VarNet without decomposition
In our ablation experiments, we compare our model with

the model without decomposition. The model without de-
composition can be presented as:
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In this model, we directly extract common features from
the reference image. Using the half-quadratic splitting al-
gorithm, the model can be reformulated as:
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This model can be solved via the following iterative
scheme:
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Similar to our main manuscript, we can get the solutions
of these sub-problems as:

xt+1
1 =xt1 − µtF ∗(F (xt1)− kx1

)

− µt(γtA>(Axt1 −BCt) + λ1φ(xt1)),
(6)

Ct+1 = (I + γtB>B + αtI)−1(x̂2 + γtB>Axt1 + αtP t),
(7)

P t+1 = NC(Ct+1; ΘC). (8)

Then we unfold these iterations into a deep network as we
have done in our main manuscript. Since this model has
only one auxiliary variable, its number of parameters is
fewer than our main model. For a fair comparison, we en-
large the denoising U-Net to ensure the two models have a

similar number of parameters. As shown in Table 3 of our
main manuscript, the model with decomposition achieves
the best performance than the others. Compared with the
model without decomposition, our model separates the ref-
erence image into a common component and a unique com-
ponent, avoiding the interference of inconsistent informa-
tion (contrast information and some unaligned structures)
on the target image. We think this is the key to the good
performance of our model.

In figure 3, we compare the reconstruction errors of our
model with different multi-contrast fusion strategies. Es-
pecially, we highlight the reconstruction results for regions
where the reference image and target image are inconsis-
tent. From the figure, we can find that our reconstruction
result has fewer reconstruction errors in those inconsistent
areas. It indicates that our decomposition-based model has
advantages in dealing with inconsistent cases.

5. Analysis of MC-VarNet model
Analysis of the channel expansion operation. In this

paper, we propose to expand the channel numbers of the
input images from 1 to ci and reconstruct ci images si-
multaneously in the iteration stages. Similar operations
can be found in [8, 10]. To be specific, in our model, we
copy each image along the channel dimension to expand
the channel numbers. In the DCL of our model, we perform
the data-consistency operation on the ci reconstruction im-
ages simultaneously. In Table 4 of our main manuscript,
we have compared the model with and without channel ex-
pansion operation and the significant performance improve-
ments fully demonstrate its effectiveness. Next, we will an-
alyze the feasibility of this operation on model-based meth-
ods. There is a common sense in the DCNN model that
the more channels of the intermediate features, the better
performance of the model. Model-based methods need to
reconstruct an intermediate image in each iteration stage.
From the perspective of an end-to-end network, the chan-
nel reduction in the intermediate step will result in informa-
tion loss, which is unfavorable to the final reconstruction re-
sults. By contrast, our channel expansion operation avoids
this problem and successfully combines model-based prior
information with powerful deep neural networks.

Compared with DCNN methods: Existing DCNN-
based multi-contrast MRI SR and reconstruction methods
often manually design fusion rules to fuse the multi-contrast
information. By contrast, our MC-VarNet model is con-
structed under the guidance of the optimization algorithm
with a well-designed data fidelity term. As we mentioned
above, the multi-contrast MR images are generated by dif-
ferent scan settings, thus they usually have their unique con-
trast information and some inconsistent structure informa-
tion. Simple fusion strategies may transfer useless informa-
tion from the reference image to the target image, thus af-



Figure 3. The reconstruction error comparison of our model with different multi-contrast fusion strategies.

fecting the reconstruction of the target image. Considering
that, we decompose the multi-contrast images into common
components and unique components, and only the common
components are used to guide the target images. Compared
with existing DCNN-based methods, our model develops
priors and constraints plugged into the model according to
the characteristics of multi-contrast MR images. By unfold-
ing the iterative solutions into deep networks, the proposed
model is not only interpretable but also powerful. We think
that’s why our approach is better than existing methods.

Visualization of the intermediate components. In Fig-
ure 4, we visualize the intermediate reconstruction results
of our model on the IXI test set for multi-contrast SR and
reconstruction tasks. Since we reconstruct ci images in
the intermediate stages, we use the weighted average layer
(WAL) to compress them into one channel and visualize
them. As one can see, with the increase in the number
of iterations, the PSNR of the reconstruction results grad-
ually increased. The decomposed common components
are mainly the consistent high-frequency details extrasted
from the reference image. The decompoased unique com-
ponents are mainly the low-frequency contrast information
and some inconsistent structure information.

6. Experimental settings
In this section, we will introduce the experimental details

of the comparison methods.
Multi-contrast guided SR. We compare our MC-

VarNet model with various MRI guided-SR methods,
including MCSR [7], CUNet [1]1, MASA [6]2, MINet [2]3

and MCMRSR [4]4. Note that MCSR and MINet are
two CNN-based MRI guided-SR methods. MASA is
a SOTA method for natural images guided-SR. CUNet
is a deep-unfolding multi-modal restoration method.
MCMRSR is a transformer-based MRI guided-SR method.
All these models are trained 50 epochs with a learning rate

1https://github.com/cindydeng1991/TPAMI-CU-Net
2https://github.com/dvlab-research/MASA-SR
3https://github.com/chunmeifeng/MINet
4https://github.com/XAIMI-Lab/McMRSR

of 1× 10−4 using the Adam optimizer. It should be noticed
that when reproducing the methods MASA and MCMRSR
on the BrainTS dataset, we pad the input images from
240× 240 to 256× 256, since their input sizes are required
to be a multiple of 64. This may be the reason for the poor
performance of these two methods on the BrainTS dataset.

Multi-contrast guided reconstruction. We com-
pare our MC-VarNet model with zero-filling (ZF),
UNet [9], MDUNet [11], MUSC [5]5, MTrans [3]6 and
Restormer [12]7. Specifically, UNet is a CNN-based
method, and MUSC is a deep unfolding multi-scale
CDic model. Restormer is a SOTA transformer-based
reconstruction method. MDUNet is a multi-contrast MRI
reconstruction method. All these models are trained 50
epochs with a learning rate of 1 × 10−4 using adam
optimizer. MTrans is a transformer-based multi-contrast
MRI reconstruction method. For the MTrans model, we set
the window size as 8 on the two contrast images. Following
their original paper, we use the SGD optimizer with a
learning rate of 1× 10−4 and train the model 50 epochs.
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