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This supplementary material offers further information
on the implementation of ADA-CM and presents additional
ablation studies. Firstly, we present additional implemen-
tation details regarding ADA-CM. Next, we conduct an
empirical investigation to assess how different strategies
for constructing concept-guided memory affect the perfor-
mance of the proposed method. Finally, we perform a thor-
ough ablation study, evaluating the effectiveness of various
prior knowledge information used in the fine-tuning pro-
cess.

1. Implementation Details
In this section, we present a comprehensive description

of the implementation details of ADA-CM. We fine-tune the
detector DETR prior to training and then freeze its weights.
Specifically, for HICO-DET, we fine-tune DETR on HICO-
DET with its weights initialized from the publicly available
model pre-trained on MS COCO [2]. For V-COCO, we pre-
train DETR from scratch on MS COCO, excluding those
images in the test set of V-COCO. For interaction predic-
tion, we first filter out detections whose score is lower than
0.2 and perform non-maximum suppression with a thresh-
old of 0.5. Then, we reserve at least 3 and at most 15 boxes
for humans and objects each for every image. We employ
two ViT variants as our backbone architectures: ViT-B/16
and ViT-L/14, where ”B” and ”L” refer to base and large,
respectively. ViT-B has 12 encoder layers and ViT-L has
24 encoder layers, both preceded by a single 2D convo-
lutional layer. To boost the performance of human-object
pairs including small objects [4], we leverage ViT-L/14-
336px to extract high-resolution feature maps. The input
resolution for ViT-B and ViT-L is 224 pixels and 336 pix-
els, respectively. γIC , γCA and γT are set to be 0.5, 0.5
and 1.0, respectively. Both LIC and LCA represent multi-
hot interaction labels, with dimensions of RC×N , where C
is the number of interaction categories and N is the mem-
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ory size. They have identical content as they serve as the
value (label) for the corresponding key (each memory slot
in each branch is designed to store information about the
same interactive human-object pair). The prior knowledge
P ∈ Rd∗N is unique to each image and contains informa-
tion about all N detected instances in it. For the i-th in-
stance, we combine its spatial configuration bi, semantic in-
formation ei, and confidence score ci into a concatenated
form pi ∈ Rd. Additionally, we apply the augmentation
method described in DETR [1], resizing the input images
such that the shortest side is at least 480 and at most 800
pixels while the longest side at most is 1333. We unfreeze
the keys of the HOI cache memories, semantic embeddings,
last projection layer and the positional embeddings of CLIP
visual encoder and instance-aware adapter modules. λ is set
to 1 during training and 2.8 during inference [5, 6]. We use
AdamW [3] as the optimizer with an initial learning rate
of 1e-3 and train ADA-CM for 15 epochs. The model is
trained on a single NVIDIA A100 device with an efficient
batch size of 8.

2. Ablation on Concept-guided Memory

This section presents an empirical investigation of how
different concept-guided memory construction strategies af-
fect the performance of the proposed method. Algorithm 1
outlines the sample selection strategy adopted in the mem-
ory construction procedure, where memshot is a hyper-
parameter that controls the number of samples in the mem-
ory per concept. The performance of using different con-
cept sets, such as“Verb,” “Object,” and “HOI,” is compared
in Table 1. Selecting HOI as the concept type allows the
model to explicitly choose samples for each HOI concept,
resulting in the best performance, as shown in the first three
rows in Table 1. Opting for ”Verb” or ”Object” as the con-
cept type yields poor performance, as many HOI concepts
may be overlooked.

Additionally, we empirically studied which distribution



Concept Type Sampling Choice Memory Size mAP Rare Non-rare
Verb Uniform 8766 6.47 4.46 7.07
Object Uniform 7807 6.63 7.24 6.45
HOI Uniform 7690 25.19 27.24 24.58
HOI Origin 7290 24.06 24.68 23.87
HOI Origin 14608 24.46 24.88 24.33

Table 1. Ablation on strategy of constructing concept-guided memory(Training-Free). ”Uniform” refers to the method of sampling
where we select samples from all available classes in equal proportions. ”Origin” indicates that we obtain the samples following the
original distribution of the dataset. Results are on HICO-DET.

Algorithm 1 Strategy for Building Concept-guided Mem-
ory

1: Define a concept set C.
2: Build a dictionary D with |C| categories.
3: for every HOI sample (x, y) do
4: if y contains the concept Ci then
5: insert x into D[Ci]
6: end if
7: end for
8: Denote memshot as the number of samples in the

memory per concept.
9: Build concept-guided memory M .

10: for every concept Ci in C do
11: Allocate min(memshot, |D[Ci]|) slots for Ci in

concept-guided memory M .
12: if memshot le |D[Ci]| then
13: Select memshot samples from D[Ci] and transfer

them to the allocated slots in M .
14: else
15: Transfer all samples in D[Ci] to the allocated slots

in M
16: end if
17: end for

e c b Full Rare Non-rare
32.81 31.80 33.11

✓ 37.04 36.12 37.32
✓ ✓ 37.20 37.60 37.08
✓ ✓ ✓ 38.40 37.52 38.66

Table 2. Components of prior knowledge ablation (Fine-Tuning
Setting, ViT-L backbone). This table studies the effect of differ-
ent components of prior knowledge on the fine-tuning setting. e:
semantic information, c: confidence score, b: spatial configura-
tion. Results are on HICO-DET.

the HOI samples should be selected from. Following the
original distribution results in a long-tailed distribution in
the concept-guided memory, reducing the performance of
rare classes, as shown in the last three rows in Table 1. Our
sampling strategy, which uniformly selects samples for each

HOI class and uses HOI as the concept type, proves to be
the most efficient. We adopt this design choice in all exper-
iments presented in the submission, unless otherwise speci-
fied.

3. Components of Prior Knowledge
As stated in the method section, the prior knowledge

consists of three components: spatial configuration, seman-
tic information of extracted objects, and a confidence score.
In practice, we formulate the above three components us-
ing the detected instances’ bounding box coordinates, se-
mantic embeddings, and logits, respectively. In this sec-
tion, we verify the effectiveness of different types of prior
knowledge. As shown in Table 2, simply adding semantic
information boosts the performance by a margin of 4.23%
mAP compared with the model tuned without prior knowl-
edge. This demonstrates the effectiveness of semantic em-
beddings fused into the visual encoder through instance-
adapter. By further adding spatial configurations and con-
fidence scores of detected instances, our model becomes
more spatial-aware and thus achieves the best performance.

4. Qualitative Results
As shown in Figure 1, we present several qualitative re-

sults of successful HOI detections. For example, in Fig-
ure 1(a), our model detects and predicts the human carrying
a skateboard with a high confidence score. We also observe
that in Figure 1(e), where our model becomes much less
confident when the detected human wearing white clothes
is far away from the detected sports ball. To illustrate our
model’s limitations, we also visualize five failure cases as
shown in Figure 2. In Figure 2(a), our model fails to predict
<human, throw, frisbee> triplet due to the similar poses of
a human throwing a frisbee and a human catching a fresbee.
As shown in Figure 2(e), our model may predict interac-
tions between irrelevant human and objects when there’re
multiple humans and objects in an image.
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Figure 2. Visualization of failure detections. The detector’s performance still has a clear gap to human performance.
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