
7. Ablation Studies

We conducted comprehensive ablative studies in order
to better understand the impact of each hyper-parameter.
The hyper-parameters are: Number of nearest neighbors
for curve extraction, M ; Number of points in Curve sam-
pling, Nc; Number of points in Patch sampling, Np; Num-
ber of points in Random sampling, Nr and number of par-
tial point clouds for each sampling method, K̃ (we retained
the restriction that K̃ is the same for all sampling meth-
ods). Our parameter search was performed in the following
manner: The base parameters were chosen to be M = 40,
Nc = 576, Np = 512, Nr = 128 and K̃ = 32. At each
stage we scanned the values of a specific parameter, while
fixing all other parameters (the order is as listed above). We
fixed the parameter to the optimal value after each stage.
The optimized value was chosen manually by considering
both overall accuracy and robustness to corruptions. Mean
is used as an aggregating scheme. The chosen values of
hyper-parameters are: M = 40, Nc = 512, Np = 512,
Nr = 128 and K̃ = 4. We observe that local sub-samples
should be large enough to allow both accuracy and robust-
ness. A global sub-sampling, such as random, requires far
less points. Surprisingly, the ensemble size may be very
small. Good results are obtained for K̃ = 4, allowing very
reasonable inference time. See Figs 7, 8, 9, 10 and 11.

Extended Ablation Studies We demonstrate the influ-
ence of each hyper-parameter under any of the corruptions
in Figs 12 and 13. The most meaningful hyper-parameter
is K̃. Ensemble size of 12 yielding very good trade-off
between running time, overall accuracy and robustness to
OOD degradations. All corruptions are improved when
enlarging the ensemble size, where Add-L is affected the
most.

8. Training procedure

We train all three partial point-cloud networks simulta-
neously and derivate each sub-sampling network’s loss with
regard to the entire point-cloud label as detailed in Algo-
rithm 2

9. Sub-Samples analysis of more models

GDANet. For training, We lower the batch size to 50 and
changed the GDM Module to accept point clouds with less
than 256 elements by lower M value to 128 in Geometry-
Disentangle Module (GDM).

All other networks did not require any extra tweaks, the
analysis results of all networks is detailed in Tables 7, 8, 9,
10, 11, 12, 13 and 14. Additionally, for a fair comparison,
we analyze the Un-Augmented DGCNN model (Tab. 9)
with each of the sub-sampling strategies applied using 12
members, instead of 4. The results confirm the main paper’s

assertion that robustness is achieved through the diversity of
the ensemble.

10. Network size (shallowness) analysis

DGCNN is constructed from 4 levels of depth. Features
of current level are recalculated based on features of pre-
vious level. In order to examine the required depth for
our case we used different versions of DGCNN. Each ver-
sion is constructed using a different number of graph re-
constructions. For example, DGCNN-v1 is built only from
one graph based on the spatial distance, therefore features
are directly derived from spatial information. As depth in-
creases (DGCNN-v2 through DGCNN-v5) the network ac-
quires additional, more complex, semantic contextual in-
formation. DGCNN-v1 has up to 64 embedding dimen-
sions, DGCNN-v2 up to 128, and so on. Each version dou-
bles the embedding dimensions (which grows exponentially
with depth). Comparing to the classical DGCNN (v4), we
observe that EPiC with DGCNN-v2 yields a highly robust
network (MCE=0.773 compare to 1.000) with much less
learnable parameters (636K compare to 1.8M). This comes
at the cost of a slight accuracy drop (92.2% compared to
92.6%). Thus, the EPiC framework can be very lean and
economic from a production perspective.

11. Corruptions and sub-sampling

Here we give some of our insights on how the different
sub-sampling methods react to different corruptions. Exam-
ples are shown in Figs. 14, 15, 16 and 17.

Add global. Curves are highly insensitive to relatively
far points (which often appear in Add-G). Therefore, they
perform best under this corruption. Patches and Random
are not influenced by the conductance, thus the added points
may be considered as well, corrupting the sample.

Add local. Here, the corruption is smoother in space and
may be interpreted as part of the shape. Patches and Curves
are more likely to be affected by it.

Drop Global. Drop Global can be viewed as globally
changing the density of the points of the shape. There-
fore, it makes sense that there is a direct proportion between
sub-sampling performance and typical density (Patches are
dense while Random is sparse, Curves are somewhere in
between). Moreover, we take into account a variable num-
ber of points, e.g. for Patches min(N,Np). Thus, when the
number of points is lower, as in the case of Drop-Global,
Patches cover more of the shape.

Drop Local. This corruption may cause separation
between different shape parts (creating disconnected re-
gions). Curves may thus be “stuck” in a disconnected re-
gion. Patches are less affected by this corruption and per-
form better.



11.1. Networks and augmentation evaluation

Evaluation of most augmented and un-augmented net-
works was reproduced by the code supplied by Ren et al.
Additionally, in the ensemble section we show results on
PointGuard. These experiments are detailed below.

Point Guard. This method obtains highly sparse ran-
dom sub-samples (they suggest N = 16), using a large en-
semble of size K = 1, 000. Its theoretical analysis and
experimental setting do not assume a specific architecture
for the classifier. Thus, DGCNN is used as the basic clas-
sifier. As suggested in PointGuard we trained our classifier
for 7500 epochs to work on the sub-samples, obtaining an
overall accuracy of 80.5% (estimated on randomly 4 sub-
samples per each sample in the test set). Predictions are ag-
gregated using majority voting. Note that to obtain provable
robustness they use very small N and try to compensate by
extremely large K. However this tradeoff turns out to be
significantly inferior in terms of overall accuracy and less
competitive in mCE.

WolfMix. We follow ModelNet-C evaluation metrics.
we use the default hyper-parameters in PointWOLF (Kim
et al., 2021). We set the number of anchors to 4, sampling
method to farthest point sampling, kernel bandwidth to 0.5,
maximum local rotation range to 10 degrees, maximum lo-
cal scaling to 3, and maximum local translation to 0.25.
AugTune proposed along with PointWOLF is not used in
training. For the mixing step, we use the default hyper-
parameters in RSMix (Lee et al., 2021). We set RSMix
probability to 0.5, β to 1.0, and the maximum number of
point modifications to 512. For training, the number of
neighbors in k-NN is reduced to 20, the number of epochs
is increased to 500.

12. On Batch Normalization and OOD Robust-
ness

Using fixed learnt batch normalization parameters at test
time can be problematic, since it assumes that the sam-
ples of the train and test are both approximately of similar
distributions. However, different types of corruptions can
yield different statistics. Obviously, learning the statistics at
test time may violate the OOD principle. Nevertheless, for
some “offline” applications, which can work in batches, we
wanted to examine whether test time batch normalization is
helpful and increases robustness. To demonstrate this idea,
normalization parameters were computed during evaluation
(with a batch size of 256). We observe that mCE signifi-
cantly improves, as can be seen in Table 15.

13. Mixture of Corruptions.
We went a step further to create a more realistic data

setting by analyzing our proposed method on a blend of
corruptions from ModelNet-C. Comparing our results with

those of existing networks supports our strategy in challeng-
ing scenarios, which are closer to real-world corruptions
(Tab. 6).

Mixture EPiC
(DGCNN)

EPiC
(RPC)

RPC (cur
SOTA)

Add-G+Drop-G 0.589 0.493 0.912
Add-G+Drop-L 0.580 0.472 1.106
Add-L+Drop-G 0.882 0.902 0.911
Add-L+Drop-L 0.815 0.847 0.929

Table 6: mCE of challenging mixtures. Large improve-
ment from RPC (SOTA) with substantial deviation from
training.



Ov
er

al
l A

cc
ur

ac
y

m
CE

𝑴

Figure 7: Neighbors in random walk, curve extraction.

Ov
er

al
l A

cc
ur

ac
y

m
CE

𝑵𝒄

Figure 8: Curve sub-sample size.

Ov
er

al
l A

cc
ur

ac
y

m
CE

𝑵𝒑

Figure 9: Patch sub-sample size.

Ov
er

al
l A

cc
ur

ac
y

m
CE

𝑵𝒓

Figure 10: Random sub-sample size.

Ov
er

al
l A

cc
ur

ac
y

m
CE

෩𝑲

Figure 11: Ensemble size per sub-sample.



Sub-samples OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate
GDANet-Curves (#4) 91.3% 1.047 1.298 1.551 0.423 0.599 0.336 1.549 1.572
GDANet-Patches (#4) 93.2% 0.861 0.957 1.358 0.504 0.551 0.481 1.044 1.130
GDANet-Random (#4) 90.9% 0.819 1.287 0.462 0.359 0.836 0.512 0.898 1.381
GDANet-Mean (#12) 93.6% 0.704 0.936 0.864 0.315 0.478 0.295 0.862 1.177
GDANet-Maj. Vot.(#12) 93.2% 0.749 0.968 1.028 0.343 0.498 0.325 0.876 1.205

Table 7: Un-Augmented GDANet sub-samples analysis. Bold best. Underline second best.

Sub-samples OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate
GDANet-Curves (#4) 90.8% 0.740 1.266 0.984 0.411 0.614 0.332 0.818 0.758
GDANet-Patches (#4) 92.1% 0.667 0.979 1.275 0.464 0.493 0.353 0.531 0.572
GDANet-Random (#4) 90.8% 0.646 1.234 0.462 0.383 0.758 0.359 0.571 0.758
GDANet-Mean (#12) 92.5% 0.530 0.968 0.639 0.343 0.473 0.275 0.433 0.577
GDANet-Maj. Vot.(#12) 92.2% 0.558 1.000 0.725 0.355 0.478 0.292 0.462 0.591

Table 8: WolfMix Augmented GDANet sub-samples analysis. Bold best. Underline second best.

Sub-samples OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate
DGCNN-Curves (#4) 90.7% 1.069 1.628 1.297 0.431 0.729 0.363 1.618 1.414
DGCNN-Curves (#12) 91.3% 1.011 – – – – – – –
DGCNN-Patches (#4) 92.8% 0.793 0.989 1.165 0.577 0.536 0.505 0.851 0.930
DGCNN-Patches (#12) 92.6% 0.795 – – – – – – –
DGCNN-Random (#4) 91.5% 0.766 1.234 0.399 0.351 0.812 0.580 0.793 1.195
DGCNN-Random (#12) 91.5% 0.742 – – – — – – –
DGCNN-Mean(#12) 93.0% 0.669 1.000 0.680 0.331 0.498 0.349 0.807 1.019
DGCNN-Maj. Vot.(#12) 92.6% 0.706 1.043 0.794 0.359 0.517 0.380 0.800 1.051

Table 9: Un-Augmented DGCNN sub-samples analysis. Bold best. Underline second best.

Sub-samples OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate
DGCNN-Curves (#4) 89.5% 0.802 1.426 0.896 0.468 0.676 0.386 0.873 0.888
DGCNN-Patches (#4) 91.7% 0.618 1.053 0.823 0.536 0.512 0.380 0.433 0.591
DGCNN-Random (#4) 91.2% 0.639 1.298 0.405 0.379 0.768 0.369 0.527 0.730
DGCNN-Mean (#12) 92.1% 0.529 1.021 0.541 0.355 0.488 0.288 0.407 0.600
DGCNN-Maj. Vot.(#12) 92.3% 0.552 1.053 0.592 0.379 0.498 0.308 0.418 0.614

Table 10: WolfMix Augmented DGCNN sub-samples analysis. Bold best. Underline second best.

Sub-samples OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate
PCT-Curves (#4) 91.1% 0.934 1.234 1.320 0.391 0.551 0.322 1.393 1.330
PCT-Patches (#4) 92.5% 0.915 0.989 1.557 0.556 0.541 0.549 1.080 1.135
PCT-Random (#4) 91.9% 0.741 1.245 0.427 0.335 0.744 0.502 0.785 1.149
PCT-Mean (#12) 93.4% 0.646 0.894 0.851 0.306 0.435 0.285 0.735 1.019
PCT-Maj. Vot.(#12) 93.1% 0.693 0.957 0.994 0.331 0.454 0.315 0.760 1.042

Table 11: Un-Augmented PCT sub-samples analysis. Bold best. Underline second best.



Sub-samples OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate
PCT-Curves (#4) 90.4% 0.699 1.255 0.927 0.427 0.570 0.332 0.698 0.684
PCT-Patches (#4) 92.7% 0.633 0.904 1.339 0.391 0.420 0.312 0.505 0.558
PCT-Random (#4) 91.0% 0.636 1.245 0.554 0.375 0.700 0.342 0.567 0.670
PCT-Mean (#12) 92.7% 0.510 0.915 0.699 0.323 0.425 0.268 0.404 0.535
PCT-Maj. Vot.(#12) 92.6% 0.532 0.947 0.756 0.343 0.430 0.271 0.422 0.558

Table 12: WolfMix Augmented PCT sub-samples analysis. Bold best. Underline second best.

Sub-samples OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate
RPC-Curves (#4) 91.6% 1.068 1.287 1.680 0.399 0.594 0.322 1.495 1.702
RPC-Patches (#4) 92.4% 0.934 0.979 1.532 0.488 0.536 0.498 1.233 1.274
RPC-Random (#4) 91.5% 0.804 1.181 0.491 0.355 0.739 0.498 0.855 1.512
RPC-Mean (#12) 93.6% 0.750 0.915 1.057 0.323 0.440 0.281 0.902 1.330
RPC-Maj. Vot.(#12) 93.0% 0.791 0.957 1.168 0.343 0.473 0.319 0.913 1.367

Table 13: Un-Augmented RPC sub-samples analysis. Bold best. Underline second best.

Sub-samples OA ↑ mCE ↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate
RPC-Curves (#4) 91.7% 0.686 1.106 1.038 0.375 0.551 0.315 0.698 0.716
RPC-Patches (#4) 92.2% 0.603 0.957 1.190 0.399 0.430 0.298 0.415 0.535
RPC-Random (#4) 91.2% 0.609 1.170 0.459 0.359 0.662 0.342 0.542 0.730
RPC-Mean (#12) 92.7% 0.501 0.915 0.680 0.315 0.420 0.251 0.382 0.544
RPC-Maj. Vot.(#12) 92.7% 0.526 0.947 0.766 0.335 0.420 0.268 0.400 0.549

Table 14: WolfMix Augmented RPC sub-samples analysis. Bold best. Underline second best.

Algorithm 2 Classification using EPiC (Training)

for epoch ∈ epochs do
for X, label ∈ TrainingDataSet do

anchors← RandomlySelect([0 : 1023])
for anchor ∈ anchors do

▷ Fetch partial point clouds
Patch← FetchPatch(X, anchors(k))
Curve← FetchCurve(X, anchors(k))
Random← FetchRandom(X)
▷ Apply models
PPatch ← modelPatches(Patch)
PCurve ← modelCurves(Curve)
PRandom ← modelRandom(Random)
▷ Derivate with regard to the entire point-cloud label
LossPatch ← backward(PPatch, label)
LossCurve ← backward(PCurve, label)
LossRandom ← backward(PRandom, label)

end for
end for

end for



Method OA ↑ mCE
DGCNN 93.0% 0.669

DGCNN + BatchNorm 92.7% 0.527
DGCNN (W.M) 93.2% 0.590

DGCNN (W.M) + BatchNorm 92.0% 0.512

Table 15: BatchNorm at test time. Whereas overall accuracy is slightly degraded, OOD robustness is significantly increased,
yielding lower mCE. This violates standard OOD assumptions but may be useful in some scenarios.

CE

200
300
400
500
576
600

𝑵𝒄

10
20
30
40
50
60

𝑴

CE
CE

200
300
400
500
600

𝑵𝒑

Figure 12: Nc, M and Np



CE

100
128
200
300
400

𝑵𝒓

CE

෩𝑲
1
2
4
8
16
64

Figure 13: Nr and K̃.



R
an

d
o
m

C
u
rv
e
s

P
at
ch
e
s

Figure 14: Add Global



R
an

d
o
m

C
u
rv
e
s

P
at
ch
e
s

Figure 15: Drop Global



R
an

d
o
m

C
u
rv
e
s

P
at
ch
e
s

Figure 16: Add Local.



R
an

d
o
m

C
u
rv
e
s

P
at
ch
e
s

Figure 17: Drop Local.


