
Supplementary Material
2D3D-MATR: 2D-3D Matching Transformer for Detection-free Registration

between Images and Point Clouds

A. Implementation Details

We mainly compare to three baseline methods in the ex-
periments: (1) FCGF-2D3D, a 2D-3D implementation of
FCGF [4]; (2) P2-Net [17], a 2D-3D version of D2-Net [5]
and D3Feat [1]; (3) Predator-2D3D, a 2D-3D version of
Predator [8]. For FCGF-2D3D, we supervise the descrip-
tors using circle loss [14] instead of the hardest-in-batch
contrastive loss used in [4]. This model could be regarded
as a simplified P2-Net without the detection branch. For
P2-Net, as there is no official code released for P2-Net, we
reimplement it from the scratch. We use the detection loss
defined in [1] to supervise the detection scores because we
find the model fails to converge on our benchmarks using
the original detection loss in [17]. For Predator-2D3D, we
find that it cannot predict reliable saliency scores in 2D-3D
matching, so we only predict the overlapping scores and use
them as probabilities to sample random keypoints. And we
use transformer [16] instead of the graph network in [8] as
we find transformer achieves better results. For the base-
line methods, we sample 10000 2D keypoints and 1000 3D
keypoints and extract correspondences between them using
mutual nearest selection.

For fair comparison, we apply the same backbone net-
works in all the methods, i.e., a 4-stage ResNet [7] with
FPN [11] backbone for images and a 4-stage KPFCNN [15]
backbone for point clouds. For the 2D backbone, the out-
put channels of each stage are {128, 128, 256, 512}. For
the 3D backbone, the output channels of each stage are
{128, 256, 512, 1024}. The resolution of the input images is
480× 640 and the resolution in the coarest level is 60× 80.
Following [13], we convert RGB images to grayscale be-
fore feeding them to the network. The point clouds are
voxelized with an initial voxel size of 2.5cm and downsam-
pled in each stage using grid subsampling as in [15]. The
detailed architecture of our method is illustrated in Fig. 1.
And we use the same training settings in all the methods.
We use Adam [9] optimizer to train the networks. The net-
works are trained for 20 epochs and the batch size is 1. The
initial learning rate is 10−4, which is decayed by 0.05 every
epoch. For all methods (including ours), 256 correspon-

dences are randomly sampled to supervise the pixel (point)
descriptors. To estimate the transformation, we use PnP-
RANSAC implemented in OpenCV [3] with 5000 iterations
and the distance tolerance of 8.0.

B. Metrics
Following [17], we mainly evaluate our method using 3

metrics: Inlier Ratio, Feature Matching Recall and Regis-
tration Recall.

Inlier Ratio (IR) measures the fraction of inliers among
all putative pixel-point correspondences. Following [17],
a correspondence is an inlier if their 3D distance is below
τ1 = 5cm under the ground-truth transformation T∗

P→I

IR =
1

|C|
∑

(xi,yi)∈C

J∥T∗
P→I(xi)−K−1(yi)∥2 < τ1K, (1)

where J·K is the Iversion bracket, xi ∈ P, yi ∈ Q (Q is the
pixel coordinate matrix of I), and K−1 is the function that
unprojects a pixel to a 3D point according to its depth value.

Feature Matching Recall (FMR) is the fraction of image-
point-cloud pairs whose IR is above τ2 = 0.1. FMR mea-
sures the potential success during the registration:

FMR =
1

M

M∑
i=1

JIRi > τ2K, (2)

where M is the number of all image-point-cloud pairs.
Registration Recall (RR) is the fraction of correctly reg-

istered testing pairs. A pair of image and point cloud is
regarded as correctly registered if the root mean square er-
ror (RMSE) between the point clouds transformed by the
ground-truth and the predicted transformation TP→I is be-
low τ3 = 0.1m:

RMSE =

√
1

|P|
∑

pi∈P

∥TP→I(pi)− T∗
P→I(pi)∥22, (3)

RR =
1

M

M∑
i=1

JRMSEi < τ3K. (4)
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Figure 1: Network architecture.

We further report Patch Inlier Ratio (PIR) in the ablation
studies to evaluate the accuracy of the patch matching fol-
lowing [12]. PIR is the fraction of patch correspondences
whose overlap ratios under the ground-truth transformation
are above 0.3. It reflects the quality of the putative patch
correspondences. A pixel (point) is overlapped if there ex-
ists a point (pixel) such that their 3D distance is below a
3D threshold (i.e., 3.75cm) and their 2D distance is below
a 2D threshold (i.e., 8 pixels). As a result, we obtain two

overlap ratios, one on the image side and one on the point
cloud side. Here we take the smaller one of them as the final
overlap ratio between I and P.

C. Data Preparation

As there is no off-the-shelf benchmarks for 2D-3D reg-
istration, we first build two challenging benchmarks based
on RGB-D Scenes V2 [10] and 7Scenes [6] datasets.



Scene Scene-11 Scene-12 Scene-13 Scene-14 Mean

Depth mean (m) 1.74 1.66 1.18 1.39 1.49
Depth std (m) 0.67 0.64 0.39 0.48 0.55
Depth range (m) 2.20 2.22 1.72 2.07 2.05

Table 1: Statistics on the testing set of RGB-D Scenes V2.

Scene Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

Depth mean (m) 1.78 1.55 0.80 2.03 2.25 2.13 1.84 1.77
Depth std (m) 0.48 0.30 0.21 0.43 0.39 0.62 0.48 0.41
Depth range (m) 2.66 1.60 0.97 1.91 1.79 2.48 3.03 2.06

Table 2: Statistics on the testing set of 7-Scenes.

C.1. RGB-D Scenes V2

RGB-D Scenes V2 consists of RGB-D scans of 14 in-
door scenes. We evaluate the generality to unseen scenes
of our method and the baselines on this benchmark. For
each scene, we fuse every 25 consecutive depth frames into
a point cloud fragment, which is then voxelized with a voxel
size of 2.5cm. The first RGB image of every 25 frames are
sampled as the set of images. We then consider every pair
of image and point cloud, and select those whose overlap
ratios are at least 30%. The overlap is computed in the 3D
space. The image are first unprojected into a point cloud ac-
cording to the corresponding depth frame. Then a point is
considered as overlapped if there exists a point in the other
side which is closer than 3.75cm to it. The pairs from scenes
1-8 are used for training, scenes 9 and 10 for validation, and
scenes 11-14 for testing. As last, we obtain a benchmark of
1748 training pairs, 236 for validation and 497 for testing.
Tab. 1 shows the statistics on the testing set of our bench-
mark. In Scene-11 and Scene-12, the camera is further from
the scene and the images have a larger range of depth. While
in Scene-13 and Scene-14, the scene is much closer to the
camera.

C.2. 7-Scenes

7-Scenes consists of RGB-D scans of 7 indoor scenes
where each scene has multiple RGB-D sequences. We fol-
low the data split in [6, 2, 17] to evaluate the generality to
unseen viewpoints of our method and the baselines on this
benchmark. For each squence, we follow the same method
as in Appx. C.1 to prepare the point cloud fragments and the
RGB image frames. Then, for each scene, we collect the
all images and point cloud fragments in the training (test-
ing) sequences, and select the image-point-cloud pairs from
them whose overlap ratios are at least 50% as the training
(testing) data. The training data are split by 80%/20% for
training/validation. Note that as the RGB images and the
depth images are not calibrated in 7-Scenes, we follow [18]
to rescale the image by 585

525 for an approximate calibration.
Tab. 2 shows the statistics on the testing set of 7-Scenes.

Model Scene-11 Scene-12 Scene-13 Scene-14 Mean

Inlier Ratio ↑

(24 × 32, 12 × 16, 6 × 8) 32.8 34.4 39.2 23.3 32.4
(24 × 32, 12 × 16) 32.9 34.4 35.3 21.6 31.1
(24 × 32) 31.7 33.3 27.3 16.8 27.3

Feature Matching Recall ↑

(24 × 32, 12 × 16, 6 × 8) 98.6 98.0 88.7 77.9 90.8
(24 × 32, 12 × 16) 97.2 98.0 86.6 77.0 89.7
(24 × 32) 97.2 97.1 85.6 75.7 88.9

Registration Recall ↑

(24 × 32, 12 × 16, 6 × 8) 63.9 53.9 58.8 49.1 56.4
(24 × 32, 12 × 16) 55.6 53.9 43.3 41.2 48.5
(24 × 32) 52.8 51.0 26.8 26.1 39.2

Table 3: Additional ablation studies on RGB-D Scenes V2.
Boldfaced numbers highlight the best and the second best
are underlined.

The distance between the camera and the scene significantly
varies in different scenes. The camera is relatively far from
the scene in office, pumpkin and kitchen, but is much closer
in heads. As a result, the scale ambiguity is more significant
in 7-Scenes.

D. Additional Experiments
D.1. Additional Ablation Studies

In Tab. 3, we further progressively ablate the patch pyra-
mid and report the detailed results on each scene. Note that
here all the models are both trained and tested with the cor-
responding resolution levels, while we albate each pyramid
level only in the inference in Tab. 3 of the main paper.

For Inlier Ratio, three models achieves comparable re-
sults on the first two scenes, but the models with multi-
scale patch pyramid performs considerably better than the
single-scale one on Scene-13 and Scene-14. As discussed
in Tab. 1, the camera is closer to the scene in Scene-13 and
Scene-14, which could cause severe inconsistency between
the image patchs and the point patches. By leveraging the
patch pyramid, the scale ambiguity is alleviated such that
more accurate correspondences are obtained.

For Registration Recall, more significant improvements
are also obtained in the last two scenes. Note that alth-
ough the three models achieve similar inlier ratios in Scene-
11, the multi-scale patch pyramid provide more thoroughly-
distributed correpondences, which contributes more accu-
rate registration.

D.2. Additional Evaluations on 7-Scenes

We further present the evaluation results on 7-Scenes [6]
following the settings in [17]. We fuse a point cloud frag-
ment with 5 consecutive depth frames. During training, we
construct 5 training pairs between the fused point cloud and
the corresponding RGB images. During testing, we only



Model Chess Fire Heads Office Pumpkin Kitchen Stairs Mean

Inlier Ratio ↑

FCGF-2D3D [4] 59.2 58.5 67.5 54.4 45.0 51.6 33.5 52.8
P2-Net [17] 60.9 66.9 66.1 55.8 57.0 56.1 42.4 57.9
Predator-2D3D [8] 75.3 71.6 82.1 56.1 55.3 57.2 57.7 65.0
2D3D-MATR (ours) 84.1 79.2 76.5 73.6 71.8 78.0 69.1 76.0

Feature Matching Recall ↑

FCGF-2D3D [4] 81.8 81.0 91.0 67.5 41.7 52.3 10.5 60.8
P2-Net [17] 82.5 93.0 89.5 70.6 76.2 64.6 22.5 71.3
Predator-2D3D [8] 98.8 94.0 100.0 66.5 69.0 61.5 69.0 79.8
2D3D-MATR (ours) 100.0 96.5 99.0 99.0 92.0 99.5 99.0 97.9

Registration Recall ↑

FCGF-2D3D [4] 99.8 98.0 98.0 97.0 89.2 96.7 94.5 96.2
P2-Net [17] 99.8 98.0 96.0 98.1 91.7 97.2 93.0 96.3
Predator-2D3D [8] 99.6 92.5 99.0 96.5 82.0 95.5 87.0 93.2
2D3D-MATR (ours) 100.0 98.0 98.5 98.5 95.0 100.0 98.0 98.3

Table 4: Evaluation results on 7Scenes following the ex-
periment settings in [17]. Boldfaced numbers highlight the
best and the second best are underlined.

use the last RGB frame to construct 1 testing pair for each
point cloud fragment. The RGB images are rescaled as de-
scribed in Appx. C.2. As a result, we obtain 23500 training
pairs, 2500 validation pairs, and 3400 testing pairs. All the
models are trained from scratch in the experiments. Com-
pared to our benchmark in the main paper, this setting is
more easier due to small transformation and high overlap
ratio. Note that the thresholds for the metrics in this setting
are τ1 = 4.5cm, τ2 = 50% and τ3 = 5cm following [17].

The results are shown in Tab. 4. For Inlier Ratio, 2D3D-
MATR outperforms the baseline methods by a large mar-
gin, especially on the last four harder scenes. This further
contributes to significant improvements on Feature Match-
ing Recall, where our method surpasses the second best
Predator-2D3D by 18 pp. For Registration Recall, the per-
formance tends to be saturated in most scenes. Nonethe-
less, 2D3D-MATR still achieves the best results, especially
on pumpkin and stairs. These results have demonstrated the
efficacy of our method.

D.3. Qualitative Results

We provide more qualitative comparisons of P2-Net [17]
and 2D3D-MATR on 7-Scenes (Fig. 2) and RGB-D Scenes
V2 (Fig. 3). It is observed that the correspondences from
our method are much denser and more accurate those from
P2-Net. Moreover, 2D3D-MATR extracts correspondences
from both near and far regions, showing strong robustness
to scale variance.
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Figure 2: Comparisons of extracted correspondences on 7-Scenes.
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Figure 3: Comparisons of extracted correspondences on RGB-D Scenes V2.
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