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A. Qualitative Results

More qualitative tracking results of Aba-ViTrack and
eight top trackers are shown in Fig. 1 as a supplement
to those in the main paper. As can be seen, only our
tracker successfully tracks the targets in all challenging ex-
amples, where pose variations (i.e., in all sequences), back-
ground clusters (i.e., Animal1 and uav000088 0000 s), and
scale variations (i.e., bike1 and S1701) are presented. Our
method performs much better and is more visually pleasing
in these cases, further supporting the effectiveness of the
proposed method for UAV tracking.

More samples selected from UAVDT [5], VisDrone2018
[21], DTB70 [10], UAV123 [13], and UAVTrack112 L
[6] are provided in Fig. 2 to visualize the token’s depth
that is adaptively controlled during inference with A-ViT*
and our Aba-ViTrack, respectively. As can be seen, our
background-aware token halting tends to stop background
tokens earlier than A-ViT does, which is, therefore, effec-
tive in halting distractors and irrelevant tokens and their as-
sociated computations for UAV tracking. For example, in
the case of animal and person classes, our method basically
keeps only the target textures. The examples of cars, boats,
and buildings also exhibit similar effects.

B. Comparison with Deep Trackers

Due to page length limit in the main paper, we only
compared our method with 20 state-of-the-art deep trackers
on DTB70 [10] dataset. In this section, our Aba-ViTrack
is compared with five more state-of-the-art deep trackers,
i.e., CSWinTT [14], SparseTT [7], SLT-TransT [9], SLT-
TrDriMP [9], and ToMP [11], on three more datasets, i.e.,
UAVDT [5], VisDrone2018 [21], and UAV123@10fps [13].
The precision, AUC, and average FPS are shown in Table 1.
The precision (PRC) and AUC are shown in form of (PRC,
AUC). As can be seen, our Aba-ViT achieves the best preci-
sion on both DTB70 [10] and VisDrone2018 [21], and ob-
tains the best and the second-best AUC on VisDrone2018

[21] and DTB70 [10], respectively. Although our method
is significantly lower in precision and AUC compared with
TrSiam and TrDimP on UAVDT [5], with differences up
to about 5%, our method is close to five times faster than
the two method. On UAV123@10fps [13], although our
method is significantly inferior to the first-place KeepTrack
[12] with margins of 4.7% and 2.7% on precision and AUC,
respectively, our method outperforms KeepTrack [12] on
both DTB70 [10] and VisDrone2018 [21] and is close to it
on UAVDT [5] with difference less than 0.5%. Remarkably,
our method is near 9 times faster than KeepTrack [12].

C. Detailed Analysis on Weighting the Pro-
posed Ponder Loss

Detailed Analysis on the weight αp of the proposed pon-
der loss L∗

ponder on the performance are evaluated on all
six datasets are shown in Table 2. As can be seen, the
best precision (PRC) over all datasets is achieved at αp =
1.0 × 10−4, while the best AUC is also obtained at αp =
1.0 × 10−4 except for UAV123@10fps [13] and UAV123
[13]. We also observe that the second and third-best perfor-
mances over all these datasets are distributed both above
and below αp = 1.0 × 10−4 without apparent patterns,
which may be explained by the differences between these
datasets. The maximal difference of precision is observed
on UAVDT [5] by 5.6% and the maximal difference of AUC
is observed on UAVDT [5] and UAVTrack112 L [6] by
3.4%, quite significant margins, suggesting that the weight
αp does greatly impact the tracking performance. More
specifically, if appropriately weighted, the proposed pon-
der loss will lead to better tracking performance, otherwise,
it may bring bad effects on the tracking task training.

D. Detailed Analysis on Weighting the Back-
ground Tokens

Detailed Analysis on the weight ωb of the ponder loss of
background tokens on the tracking performance are eval-



Figure 1. Qualitative evaluation on 4 video sequences from, respectively, UAV123@10fps [13], DTB70 [10], UAVDT [5], and Vis-
Drone2018 [21] (i.e. bike1, Animal1, S1701, and uav000088 0000 s).

Figure 2. Original image (left), the dynamic token depth of A-ViT* (middle), and that of Aba-ViT (right) on samples from the DTB70
[10], UAVDT [5], VisDrone2018 [21], UAV123 [13]and UAVTrack112 L [6].

uated on all six datasets are shown in Table 3. ωb goes
from 1.0 to 3.0. Note that ωb = 1.0 reduces to the A-ViT*
model. We can observe that the best precision is consis-
tently achieved at ωb = 1.5. However, the best AUC is di-
versely distributed over the range of ωb, despite that the sec-

ond and the third-best AUCs are also obtained at ωb = 1.5.
These results suggest that the impact of halting the back-
ground tokens strongly depends on datasets as well, which
may be explainedy by the difficulties of discriminating the
targets from backgrounds vary among different datasets.



Table 1. Precision and speed (FPS) comparison between Aba-ViTrack and deep-based trackers on DTB70[10], UAVDT [5], VisDrone2018
[21], and UAV123@10fps [13]. Note that the precision and AUC are shown in form of (PRC, AUC), and the average GPU speed are
shown in form of GPU fps. Red, blue and green indicate the first, second and third place.

Method DTB70[10] UAVDT[5] VisDrone2018[21] UAV123@10fps[13] avg. FPS

SiamMask (CVPR 2018) [16] ( 76.9, 57.1 ) ( 80.5, 59.7 ) ( 79.4, 58.1 ) ( 78.8, 59.1 ) 110.5
DiMP18 (ICCV 2019) [1] ( 79.8, 61.7 ) ( 77.2, 55.8 ) ( 76.4, 57.5 ) ( 83.5, 63.8 ) 74.2

DiMP50 (ICCV 2019) [1] ( 79.2, 61.3 ) ( 78.3, 57.4 ) ( 83.5, 63.0 ) ( 85.1, 64.7 ) 51.3

SiamRPN++ (CVPR 2019) [9] ( 79.9, 61.4 ) ( 82.2, 61.0 ) ( 79.1, 60.0 ) ( 78.4, 59.4 ) 57.6

SiamDW (CVPR 2019) [19] ( 73.5, 50.4 ) ( 67.9, 43.6 ) ( 79.7, 59.8 ) ( 71.6, 50.6 ) 66.5

PrDiMP18 (CVPR 2020) [4] ( 84.0, 64.3 ) ( 75.8, 55.9 ) ( 79.8, 60.2 ) ( 83.9, 64.7 ) 53.9

PrDiMP50 (CVPR 2020) [4] ( 76.4, 59.5 ) ( 82.7, 60.1 ) ( 79.4, 59.7 ) ( 87.9, 67.5 ) 42.3

TransT (CVPR 2021) [3] ( 83.6, 65.8 ) ( 82.6, 64.2 ) ( 85.9, 65.2 ) ( 84.8, 66.5 ) 55.0

SiamGAT (CVPR 2021) [8] ( 75.1, 57.9 ) ( 76.4, 58.9 ) ( 78.3, 59.2 ) ( 77.6, 59.7 ) 95.8

TrDiMP (CVPR 2021) [15] ( 82.4, 63.9 ) ( 88.2, 64.5 ) ( 84.1, 63.1 ) ( 87.3, 66.5 ) 35.8

AutoMatch (ICCV 2021) [18] ( 82.5, 63.4 ) ( 82.1, 62.9 ) ( 78.1, 59.6 ) ( 78.1, 59.4 ) 63.6

SAOT (ICCV 2021) [20] ( 83.1, 64.6 ) ( 82.1, 60.7 ) ( 76.9, 59.1 ) ( 85.2, 65.7 ) 35.2

LightTrack (CVPR 2021) [17] ( 76.4, 59.1 ) ( 80.4, 61.1 ) ( 74.8, 56.8 ) ( 77.6, 59.9 ) 103.6
KeepTrack (ICCV 2021) [12] ( 83.6, 64.3 ) ( 83.8, 60.5 ) ( 84.0, 63.5 ) ( 89.7, 68.2 ) 20.3

TrSiam (CVPR 2021) [15] ( 82.7, 63.9 ) ( 88.9, 65.0 ) ( 84.7, 64.0 ) ( 85.3, 64.9 ) 38.1

CSWinTT (CVPR 2022) [14] ( 80.3, 62.3 ) ( 67.3, 54.0 ) ( 75.2, 58.0 ) ( 87.1, 68.1 ) 9.6

SparseTT (IJCAI 2022) [7] ( 82.3, 65.8 ) ( 82.8, 65.4 ) ( 81.4, 62.1 ) ( 82.2, 64.9 ) 31.5

SLT-TransT (ECCV 2022) [9] ( 83.4, 65.6 ) ( 82.9, 62.5 ) ( 85.6, 65.3 ) ( 86.2, 67.4 ) 32.6

SLT-TrDiMP (ECCV 2022) [9] ( 83.6, 64.5 ) ( 87.9, 63.8 ) ( 85.1, 63.6 ) ( 88.0, 67.1 ) 31.3

ToMP (CVPR 2022) [11] ( 85.6, 67.1 ) ( 85.4, 64.1 ) ( 84.1, 64.4 ) ( 87.5, 67.9 ) 23.8

Aba-ViTrack (Ours) ( 85.9, 66.4 ) ( 83.4, 59.9 ) ( 86.1, 65.3 ) ( 85.0, 65.5 ) 181.5

Table 2. Ablation study of weighting the ponder loss L∗
ponder on DTB70 [10], UAVDT [5], VisDrone2018 [21], UAV123@10fps [13],

UAV123 [13], and UAVTrack112 L [6]with αp ranging from 0.5× 10−4 to 1.5× 10−4. Note that ×10−4 is omitted for simplicity. And
the precision and AUC are shown in form of (PRC, AUC).

αp DTB70[10] UAVDT[5] VisDrone2018[21] UAV123@10fps[13] UAV123[13] UAVTrack112 L[6]

0.5 ( 82.9, 64.6 ) ( 80.9, 58.4 ) ( 83.6, 63.4 ) ( 82.2, 65.4 ) ( 82.0, 65.0 ) ( 78.0, 63.2 )
0.6 ( 85.4, 65.8 ) ( 80.8, 58.4 ) ( 83.7, 63.5 ) ( 81.4, 65.0 ) ( 84.0, 66.4 ) ( 76.8, 61.8 )
0.7 ( 84.2, 65.1 ) ( 81.8, 59.1 ) ( 84.1, 63.7 ) ( 79.7, 63.7 ) ( 83.2, 66.0 ) ( 77.8, 63.0 )
0.8 ( 83.6, 65.1 ) ( 80.7, 58.4 ) ( 83.1, 63.0 ) ( 81.5, 64.6 ) ( 80.7, 63.7 ) ( 77.4, 62.5 )
0.9 ( 83.4, 64.6 ) ( 77.8, 56.5 ) ( 82.7, 63.1 ) ( 83.2, 65.9 ) ( 82.7, 65.5 ) ( 78.1, 63.1 )
1.0 ( 85.9, 66.4 ) ( 83.4, 59.9 ) ( 86.1, 65.3 ) ( 85.0, 65.5 ) ( 86.4, 66.4 ) ( 81.1, 64.2 )
1.1 ( 83.9, 65.2 ) ( 82.7, 59.3 ) ( 82.1, 62.8 ) ( 82.3, 65.4 ) ( 83.2, 65.7 ) ( 77.2, 62.3 )
1.2 ( 85.1, 65.7 ) ( 80.4, 58.2 ) ( 84.3, 63.9 ) ( 80.9, 64.5 ) ( 83.1, 65.7 ) ( 78.1 63.3 )
1.3 ( 82.9, 64.4 ) ( 81.9, 59.6 ) ( 83.9, 63.3 ) ( 82.3, 65.5 ) ( 83.6, 66.2 ) ( 77.8, 63.0 )
1.4 ( 85.1, 65.7 ) ( 79.7, 57.4 ) ( 84.0, 63.3 ) ( 82.1, 65.4 ) ( 83.2, 65.9 ) ( 77.7, 62.8 )
1.5 ( 83.8, 65.5 ) ( 79.5, 57.4 ) ( 85.4, 65.1 ) ( 81.5, 64.9 ) ( 84.7, 67.0 ) ( 76.9, 62.4 )

Therefore, the weighting of the ponder loss of background
tokens should be set appropriately, since too large weight
may stop too many background tokens so that the discrim-
inative learning lacks sufficient negative samples, thus re-
sulting in degraded performance, whereas, small weight re-

duces the model to the baseline A-ViT* without prior in-
formation about background is exploited. As can be seen,
when ωb is appropriately set with fixed αp, our proposed
background-aware ponder loss can improve PRC and AUC
of the baseline A-ViT* on all datasets.



Table 3. Ablation study of weighting the background tokens on DTB70 [10], UAVDT [5], VisDrone2018 [21], UAV123@10fps [13],
UAV123 [13], and UAVTrack112 L [6] with ωb ranging from 1.0 to 3.0. Note that the precision and AUC are shown in form of (PRC,
AUC).

ωb DTB70[10] UAVDT[5] VisDrone2018[21] UAV123@10fps[13] UAV123[13] UAVTrack112 L[6]

1.0 ( 84.1, 64.7 ) ( 78.2, 56.7 ) ( 84.4, 63.9 ) ( 82.1, 65.3 ) ( 82.9, 65.6 ) ( 76.8, 62.1 )
1.1 ( 85.6, 65.9 ) ( 83.3, 60.3 ) ( 82.1, 62.9 ) ( 82.7, 65.8 ) ( 83.7, 66.5 ) ( 76.1, 61.9 )
1.2 ( 83.1, 64.6 ) ( 80.3, 57.9 ) ( 86.0, 66.1 ) ( 80.7, 64.2 ) ( 81.9, 64.9 ) ( 78.9, 63.8 )
1.3 ( 83.9, 64.7 ) ( 82.1, 59.1 ) ( 82.3, 62.4 ) ( 81.5, 64.9 ) ( 82.9, 65.6 ) ( 77.9, 63.2 )
1.4 ( 83.2, 64.4 ) ( 78.6, 57.3 ) ( 85.8, 64.9 ) ( 82.3, 65.4 ) ( 82.6, 65.4 ) ( 77.0, 61.9 )
1.5 ( 85.9, 66.4 ) ( 83.4, 59.9 ) ( 86.1, 65.3 ) ( 85.0, 65.5 ) ( 86.4, 66.4 ) ( 81.1, 64.2 )
1.6 ( 84.1, 64.9 ) ( 81.5, 58.9 ) ( 85.1, 64.5 ) ( 81.3, 64.9 ) ( 82.6, 65.7 ) ( 78.7, 63.7 )
1.7 ( 84.4, 65.3 ) ( 79.7, 57.7 ) ( 82.9, 62.8 ) ( 80.6, 64.3 ) ( 82.6, 65.6 ) ( 79.8, 64.4 )
1.8 ( 85.5, 65.5 ) ( 80.0, 58.3 ) ( 84.3, 64.2 ) ( 82.0, 65.2 ) ( 84.8, 66.8 ) ( 76.9, 62.6 )
1.9 ( 83.8, 64.5 ) ( 82.3, 59.4 ) ( 84.9, 64.7 ) ( 80.8, 64.3 ) ( 82.4, 65.4 ) ( 78.0, 62.8 )
2.0 ( 82.5, 64.1 ) ( 84.6, 61.5 ) ( 80.6, 61.5 ) ( 83.0, 65.9 ) ( 83.4, 66.0 ) ( 78.9, 64.1 )
2.5 ( 84.6, 65.3 ) ( 78.2, 56.6 ) ( 83.9, 63.7 ) ( 81.6, 64.9 ) ( 83.9, 66.4 ) ( 79.1, 63.9 )
3.0 ( 84.4, 64.9 ) ( 83.0, 59.4 ) ( 84.9, 64.7 ) ( 80.7, 64.3 ) ( 83.3, 66.0 ) ( 78.2, 63.4 )

E. Attribute-based Evaluation

To further examine and comprehend the performances
of different trackers, we conduct performance evaluations
based on 11 attributes. Our Aba-ViTrack achieves the best
PRC and AUC on most attributes. To limit the page length,
we demonstrate the success plots and precision plots on the
DTB70 [10] dataset in this section and leave the results on
UAV123@10fps [13], UAVDT [5], and VisDrone2018 [21]
to the zip file.

As illustrated in Fig. 3, we can observe that Aba-ViTrack
achieves the best AUC on all attributes except on ‘Out-of-
view’. Specifically, Aba-ViTrack significantly outperforms
the second tracker on ‘Aspect ratio variation’, ‘Scale vari-
ation’, ‘Background clutter’, ‘Deformation’, and ‘Out-of-
plane rotation’, with gains of 5.0%, 5.5%, 7.0%, 6.8%,
19.1%, respectively. It is worthy of note that only a small
margin of 0.7% between Aba-ViTrack and the first tracker
TCTrack [2] is observed, although Aba-ViTrack is inferior
to TCTrack [2].

In terms of precision, our Aba-ViTrack achieves the
best performance on all attributes except on ‘Occlusion’,
as shown in Fig. 4. More specifically, Aba-ViTrack signif-
icantly surpasses the second tracker on ‘Aspect ratio vari-
ation’, ‘Motion blur’, ‘Scale variation’, ‘Background clut-
ter’, ‘Deformation’, ‘Out-of-plane rotation’, and ‘In-plane
rotation’, by a significant margin of 5.8%, 4.8%, 6.5%,
4.9%, 7.5%, 17.9%, and 5.1%, respectively. Although Aba-
ViTrack is surpassed by TCTrack [2] on ‘Occlusion’, the
difference is only 0.3%, quite small a margin. These results
justify the effectiveness of our method in raising tracking
performance.
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