
A. Characterizing Supervised Backdoor At-
tacks

In supervised learning, the backdoor attack associates the
trigger r with the target label t via (implicitly) minimizing
the objective defined in Eq (1). The success of this attack is
often attributed to the model’s excess capacity [39], which
“memorizes” both the function that classifies clean inputs
and that misclassifies trigger inputs. Note that Eq (1) does
not specify any constraints on the representations of trigger
inputs. Thus, while associated with the same class, the
trigger-embedded and target-class inputs are not necessarily
proximate in the feature space.

(Target Class)

Trigger Input

Figure 12: t-SNE visualization of the features of trigger-embedded
and clean inputs in the supervised backdoor attack (target-class
input: red; trigger-embedded input: black).

To validate the analysis, we use CTRL to generate the
poisoning data, pollute 1% of the training data across all
the classes, and train the model in a supervised setting for
20 epochs, which achieves 100% ASR and 83% ACC. We
use t-SNE [45] to visualize the representations of trigger-
embedded and clean inputs in the test set, with results shown
in Figure 12. Although the clusters of trigger inputs (black)
and target-class inputs (red) are assigned the same label,
they are well separated in the feature space, indicating that
supervised backdoor attacks do not necessarily associate the
trigger with the target class in the feature space. This finding
also corroborates prior work [42].

For comparison, we perform CTRL against SimCLR on
CIFAR-10 and use t-SNE to visualize the features of trigger-
embedded inputs and clean inputs in the test set, with results
shown in Figure13. Observed that in comparison with the su-
pervised backdoor attack (cf. Figure12), the cluster of trigger-
embedded inputs (black) and the cluster of target-class clean
inputs (red) are highly entangled in the feature space, indi-
cating that the self-supervised backdoor attack takes effect
by aligning the representations of trigger-embedded inputs
and the target class.

B. Proofs

We first introduce the following two assumptions com-
monly observed in encoders trained using SSL [49]

Assumption B.1. (Alignment) A well-trained encoder f
tends to map a positive pair to similar features. Formally,
for given input x, f(x)⊺f(x+) ≥ (1 − ϵ), where ϵ ∈ [0, 1)
is a small non-negative number. In particular, by design,
the trigger r is invariant to the augmentation operator:
f(r)⊺f(r+) = 1.

Assumption B.2. (Uniformity) A well-trained encoder f
tends to map inputs uniformly on the unit hyper-sphere Sd−1

of the feature space, preserving as much information of the
data as possible. Thus, as the number of data points is large,
the average angle θ between the features of a negative pair
follows the distribution density function [1]:

h(θ) =
1√
π

T(d2 )

T(d−1
2 )

(sin θ)d−2, θ ∈ [0, π] (4)

As the dimension d is high, most of the angles heavily con-
centrate around π/2.

Based on B.1 and B.2, we now prove Theorem 5.1.
(Target Class)

Trigger Input

Figure 13: t-SNE visualization of the features of trigger-embedded
and clean inputs in the self-supervised backdoor attack (target-class
input: red; trigger-embedded input: black).

Proof of Theorem 5.1. According to Assumption B.1, we
have

f(x⋆)
⊺f(x+

⋆ ) ≥ (1− ϵ) (5)

In other words,

(1− α)2f(x)⊺f(x+) + α2f(r)⊺f(r+)+

α(1− α)(f(x)⊺f(r+) + f(r)⊺f(x+)) ≥ (1− ϵ).



Since both f(x)⊺f(x+) and f(r)⊺f(r+) are no larger than
1, we have

α(1− α)(f(x)⊺f(r+) + f(r)⊺f(x+))

≥ (1− ϵ)− (1− α)2f(x)⊺f(x+)− α2f(r)⊺f(r+)

≥ (1− ϵ)− (1− α)2 − α2

= 2α(1− α)− ϵ

Then, based on Assumption B.1, we have

f(x)⊺f(r) ≥ 1− ϵ

2α(1− α)
. (6)

For x̃∗ and x, we have

f(x̃∗)
⊺f(x) = (1− α)f(x̃)⊺f(x) + αf(r)⊺f(x)

Since x̃ and x are a negative pair, based on Assumption B.2,
we have

E[f(x̃∗)
⊺f(x)] ≥ α(1− ϵ

2α(1− α)
)

≥ α− ϵ

2(1− α)

(7)

For a well-trained f , ϵ is a constant. Thus, both Eq (6)
and Eq (7) are functions that first increase and then decrease
with respect to α ∈ (0, 1).

C. Details of Experimental Setting
Dataset – For each dataset, we split it as a training set

and a testing set according to its default setting. Specifi-
cally, both CIFAR-10 and CIFAR-100 are split into 50,000
and 10,000 images for training and testing, respectively;
ImageNet-100 is split as 130,000 training and 5,000 test-
ing images; while GTSRB is split into 39,209 training and
12,630 testing images.

Data augmentation – For convenience, we describe the
details of data augmentations in a PyTorch style. Specifically,
following prior work [7, 4], we use geometric augmentation
operators including RandomResizeCrop (of scale [0.2, 1.0])
and RandomHorizontalFlip. Besides, we use ColorJitter
with [brightness, contrast, saturation, hue] of strength [0.4.,
0.4, 0.4, 0.1] with an application probability of 0.8 and
RandomGrayscale with an application probability of 0.2.

Encoder training – We use the training set of each
dataset to conduct contrastive learning. We show the hyper-
parameters setting for each contrastive learning algorithm in
Table 7, which is fixed across all the datasets.

Classifier training – Without explicit specification, we
randomly sample 50 examples from each class of the corre-
sponding testing set to train the downstream classifier. We
show the hyper-parameters of classifier in Table 8.

Hyper-parameter
SSL Method

SimCLR BYOL SimSiam
Optimizer SGD SGD SGD

Learning Rate 0.5 0.06 0.06
Momentum 0.9 0.9 0.9

Weight Decay 1e-4 1e-4 5e-4
Epochs 500 500 500

Batch Size 512 512 512
Temperature 0.5 - -

Moving Average - 0.996 -

Table 7. Hyper-parameters of encoder training.

Hyper-parameter Setting
Optimizer SGD
Batch Size 512

Learning Rate 0.2
Momentum 0.9
Scheduler Cosine Annealing

Epochs 20

Table 8. Hyper-parameters of classifier training.

Evaluation – We evaluate ACC using the full testing set.
For ASR, we apply CTRL on the full testing set and measure
the ratio of trigger inputs that are classified to the target class.
All the experiments are performed on a workstation equipped
with Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz, 512GB
RAM, and four NVIDIA A6000 GPUs.

D. More Experimental Results

Here, we show the additional experimental results.
Performance of clean models – The ACC and ASR of

clean models trained by SimCLR, BYOL, and Simsiam are
summarized in Table 9.

Dataset
SSL Method

SimCLR BYOL SimSiam
ACC ASR ACC ASR ACC ASR

CIFAR-10 79.1% 9.93% 82.4% 12.2% 81.5% 11.75%
CIFAR-100 48.1% 1.14% 51.0% 0.46% 52.0% 0.72%

ImageNet-100 42.2% 1.59% 45.1% 1.41% 41.3% 1.53%

Table 9. Accuracy of different SSL methods under normal training.

Fine-tuning data size – Typically, equipped with the
pre-trained encoder, the victim fine-tunes the downstream
classifier with a small labeled dataset. Here, we evaluate
the impact of this fine-tuning dataset on CTRL. Figure 14
illustrates the performance of CTRL as a function of the
number of labeled samples per class.

Observe that both ACC and ASR of CTRL increase with
the fine-tuning data size, while their variance decreases grad-
ually. For instance, when the number of labeled samples
per class is set as 50, the ASR of CTRL on CIFAR-10 under
SimSiam stably remains around 75%. This may be explained
as follows. Without the supervisory signal of labeling, CTRL
achieves effective attacks by entangling the representations



10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

ACC
ASR

SimCLR BYOL SimSiam(%)

0

25

50

75

100

0

25

50

75

100

CIFAR-100

CIFAR-10

Figure 14: Performance of CTRL w.r.t. the fine-tuning data size.

of trigger-embedded and target-class inputs (details in § 5).
During fine-tuning, more labeled samples imply that the rep-
resentations of trigger-embedded inputs are more likely to be
associated with the target-class label, leading to higher and
more stable ASR. In other words, more fine-tuning data not
only improves the model’s performance but also increases
its attack vulnerability.

Batch size – Existing studies show that batch size tends
to impact the performance of contrastive learning [7]. Here,
we explore its influence on the performance of CTRL. Specif-
ically, on the CIFAR-10, we measure the ACC and ASR of
CTRL with the batch size varying from 128 to 512, with
results shown in Figure 15.

128 256 512 128 256 512
Batch Size

128 256 512

SimCLR BYOL SimSiam(%)

0

25

50

75

100

CIFAR-10

ACC
ASR

Figure 15: Performance of CTRL w.r.t. the batch size on CIFAR10.

Observe that the model’s accuracy improves with the
batch size, which corroborates the existing studies [7]. More-
over, a larger batch size (e.g., ≥ 512) generally benefits the
ASR of CTRL. This may be explained by that more positive
pairs (also more negative pairs in SimCLR) in the same batch
lead to tighter entanglement between trigger-embedded and
target-class inputs. Meanwhile, for smaller batch sizes (e.g.,
≤ 256), the three SSL methods show slightly different trends.
This may be attributed to the design of their loss functions:
BOYL and SimSiam only optimize positive pairs, while
SimCLR optimizes both positive and negative pairs, thereby
gaining more benefits from larger batch sizes.

Training epochs – Typically, SSL benefits from more
training epochs [4]. We evaluate the impact of training
epochs on the performance of CTRL. Figure 16 shows the
ACC and ASR of CTRL as the number of epochs varies from
600 to 1,000.

Observe that as the training epoch increases, the ACC

0

25

50

75

100
SimCLR BYOL SimSiam

ACC
ASR

600 800 1000 600 800 1000
Training Epochs

600 800 1000
0

25

50

75

100

CIFAR-10

CIFAR-100

(%)

Figure 16: Performance of CTRL w.r.t. the number of epochs.

of CTRL gradually grows, while the ASR remains at a high
level. For example, on CIFAR-10 with SimCLR, when the
number of epochs increases from 600 to 1,000, the ACC also
increases from 80.52% to 83,94%, and the ASR remains
above 75%. In a few cases, the ASR slightly drops. We
speculate this is caused by the random data augmentations
used in SSL. Side evidence is that on CIFAR-10 with BYOL,
the ASR first slightly decreases and then remains above
80%. In general, the number of training epochs has a limited
impact on the effectiveness of CTRL.


