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0.1. Detailed Analysis of Distiller Search Space

In this part, we present a detailed formulation and discus-
sion of distillation operations in our search space.

0.1.1 Knowledge Transformations

Attention & Mask Distillation: Instead of matching orig-
inal features, attention distillation focuses on transferring
knowledge from attention maps. For example, methods like
AT [30] summarize values across the channel dimension to
transfer attention knowledge. FKD [31] uses the sum of
teacher and student attention to guide the student’s focus on
changeable areas. FGD enforces the student to learn crucial
parts from the teacher and compensates for missing global
information. Mask distillation applies a mask transforma-
tion operation before feature distillation. MGD [29] uses
a random mask to cover the student’s features based on a
threshold λ. This mask helps guide the student’s learning
process.
Multi-scale & Local Distillation: Multi-scale distilla-
tion [2] leverages the benefits of modeling context infor-
mation at different abstract levels. It involves extracting dif-
ferent levels of knowledge from the features using techniques
such as spatial pyramid pooling. This approach allows the
student network to utilize information from multiple scales.
Local distillation focuses on distinctive and repeatable pat-
terns or structures within an image, known as local features.
LKD [16] selects local parts and uses a local correlation
matrix to guide the student’s learning. The original feature
is divided into patches, and each patch is distilled separately.
Sample-wise Distillation: Sample-wise distillation consid-
ers the relationships between input samples during the knowl-
edge transfer process. Methods like RKD (Relational Knowl-
edge Distillation) compare angle and structure distances be-
tween samples. CC (Correlation Congruence) captures corre-
lations between embedding representations. The correlation
matrix is used to measure sample-wise features’ similarity or
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to compute the Kullback-Leibler (KL) divergence for sam-
ple relationships. Following SP [27], we use the correlation
matrix for the sample-wise features as follows:
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where ÃT , ÃS ∈ RN×CHW is the reshaping of the original
features AT and AS . Furthermore, we also minimize the
Kullback–Leibler (KL) divergence for the sample relation-
ships as follows:
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ÃS

n,i

)
 (2)

where ϕ is softmax function and T is temperature coeffi-
cient. In addition, sample distillation combined with L2

distance when the distilling feature normalized in the sample
dimension.
Channel-wise Distillation: Channel-wise distillation fo-
cuses on the knowledge contained in each channel of the fea-
ture maps. Methods like CWD minimize the KL divergence
between probability maps calculated by normalizing the fea-
ture maps. ICKD (Inter-Channel Knowledge Distillation)
calculates the disparity of the channel correlation matrix.
Channel-wise features are transformed and compared us-
ing various operations. Following ICKD [18], channel-wise
features GS and GT are transformed by the channel-wise
operations and then computed as G− L2 loss as follows:

LKD =

∥∥∥∥ (GT ) · (GT )⊤

∥(GT ) · (GT )⊤∥2
− (GS) · (GS)⊤

∥(GS) · (GS)⊤∥2

∥∥∥∥
2

, (3)

In addition, this channel-wise knowledge also can be derived
from the as follows:
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where ϕ is softmax function and T is temperature coefficient.
Note that channel distillation and L2 distance are combined
when normalization is achieved in the channel dimension.
Logits Distillation: Logits distillation targets the output
layer of the network. Methods like logits KD [9] aim to
match the logits or output probabilities between the teacher
and student networks. This is achieved by calculating KL or
Pearson distances for intra-class and inter-class knowledge
with different temperature coefficients.

These distillation methods provide a range of techniques
to transfer knowledge from the teacher network to the stu-
dent network, considering different aspects such as attention,
masks, multi-scale information, local features, sample rela-
tionships, channel-wise knowledge, and output logits.

0.1.2 Distance Functions and Hyperparameters.

In distillation, different distance functions are used to mea-
sure the difference between teacher and student output. Let
Pi denote the predicted probability of class i by the teacher
network and Qi denote the predicted probability of class i
by the student network.
L2 distance. The L2 distance measures the square root of the
sum of the squared differences between the probabilities of
each class in the two distributions. The L2 distance between
P and Q is defined as:

DL2(P,Q) =
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Cosine distance. The cosine distance measures the cosine of the
angle between the two probability vectors. This distance measure
is useful when the magnitudes of the probability vectors are not
important, only their directions. The cosine distance between P
and Q is defined as:
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Pearson distance. The Pearson distance measures the correlation
between the two probability vectors. The Pearson distance between

P and Q is defined as:
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where P̄ and Q̄ are the means of the two distributions.Similarly,
Pearson distance also is correlated with the normalized L2 distance.
KL distance. The KL distance measures the information lost when
approximating the probability distribution P with the probability
distribution Q, as follows:
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Temperature coefficient. In our distillation process, we utilize
the temperature coefficient (T ) to scale the divergence between the
probability distributions of the teacher and student networks. The
value of
mathcalT determines the sharpness or diffusion of the teacher’s
distribution and influences the behavior of the student network. A
smaller
mathcalT value leads to a sharper teacher distribution, encourag-
ing the student network to produce probability estimates closer to
the teacher’s distribution. Conversely, a larger
mathcalT value allows for a more diffuse teacher distribution, en-
abling the student network to generate more varied and less precise
probability estimates. In our search space, we consider
mathcalT values of 1, 4, 8, and 16 as options.
Loss weights. Additionally, the loss weights play a crucial role
in balancing different optimization objectives and shaping the be-
havior of the student model during distillation. By adjusting these
weights, we can tailor the student model’s behavior to suit the spe-
cific requirements of the task. In our search space, we consider
feature loss weights of 1, 5, 25, and 50 as options, as well as logits
KD loss weights of 0.1, 0.5, 1, and 5. These options provide flexi-
bility in determining the importance given to different components
of the distillation loss during the training process.

1. Detailed Experimental Settings
In this section, we provide a comprehensive overview of the

experiment settings employed for the CIFAR-100 and ImageNet
datasets. It is worth noting that all experiments adhere to standard
training settings, without incorporating additional data augmenta-
tion [13] or other specialized training techniques [21, 4, 5, 24].

1.1. Experiments on CIFAR-100
Dataset. Indeed, CIFAR-100 [10] is widely recognized as one
of the most popular datasets for evaluating the performance of
distillation methods in the field of classification. It consists of a
total of 60,000 images, with 50,000 images designated for training
purposes and the remaining 10,000 images reserved for testing.
The dataset encompasses 100 distinct classes, providing a diverse
range of objects and scenes for classification tasks. Researchers
often employ CIFAR-100 to assess the effectiveness of various
distillation techniques in improving the performance of models on
challenging classification tasks.
Implementation. In the comparison experiments involving other
knowledge distillation (KD) methods, we replicate the training



settings of KDs [25, 12, 11, 15, 14, 19, 3] for implementing various
KD methods. The training is conducted for 240 epochs using a mini-
batch size of 64 and the SGD optimizer with a weight decay of 5×
10−4. The learning rate is initialized to 0.05 and decayed by a factor
of 0.1 at 150, 180, and 210 epochs using a multi-step learning rate
schedule. To ensure a fair comparison with existing KD methods,
we adhere to the original settings and configurations of CRD while
implementing different knowledge distillation techniques. This
includes factors such as the configuration of the weight balance
(λ). Additionally, we adopt the same standard training settings as
employed in our CIFAR-100 experiments to maintain consistency
across evaluations.

1.2. Experiments on ImageNet
Dataset. We also conduct experiments on the ImageNet dataset
(ILSVRC12) [23], considered the most challenging classification
task. It contains about 1.2 million training images and 50 thousand
validation images, each belonging to one of 1,000 categories.
Implementation. In the ImageNet experiments, the student mod-
els (i.e., ResNet-18 [7] and MobileNet [8]) are trained with 100
epochs. The batch size is 256, and the multi-step learning rate is
initialized to 0.1, decayed by 0.1 at 30, 60, and 90 epochs. Other
KD methods are implemented following the hyperparameter set-
tings in the original paper. And Auto-KD’s detailed settings are the
same as those on the CIFAR-100.

1.3. Experiments on Vision Transformer
Vision transformer. The Transformer model [28] has gained sig-
nificant traction in the field of natural language processing (NLP).
Building upon its success in NLP, Google introduced the Vision
Transformer (ViT) [6] and DeiT [26] to enhance the training pro-
cess through data augmentation and knowledge distillation. How-
ever, training the Vision Transformer (ViT) from scratch presents
a challenge due to the absence of inherent visual properties such
as convolution. In recent times, knowledge distillation (KD) has
emerged as an effective technique for training ViTs with convolu-
tional neural networks (CNNs) serving as teachers. To evaluate
the effectiveness of Auto-KD, we conduct a search for ViT-based
distillation strategies on the CIFAR-100 dataset.
Student architectures. In the vision transformer architecture, the
initial step involves dividing the input images into a sequence of
patches. These patches are then processed by the transformer
network to extract relevant image features for visual recognition.
Initially, the patches are flattened and transformed into patch em-
beddings using a linear layer. Subsequently, learnable position
embeddings are added to these patch embeddings to preserve po-
sitional information. To complete the input representation, a class
token is concatenated with the enhanced patch embeddings. The
internal structure of the vision transformer comprises position en-
coding, multi-head self-attention (MSA) blocks, and a feedforward
network. Layernorm and residual connections are incorporated
to enhance the network’s performance. Furthermore, in the DeiT
architecture, a distillation token is introduced to enable learning
from the teacher’s hard labels. In our work, we extend Auto-KD to
employ DeiT-Tiny as the student model, while utilizing the same
convolution teacher RegNetY-16GF
citeRegNet. Specifically, DeiT-Tiny consists of a hidden dimension
of 192 and 12 layers, each with three attention heads.

Implementation. To ensure a fair comparison, we adopt the
same data augmentation and regularization techniques outlined in
DeiT (e.g., Auto-Augment, Rand-Augment, mixup). The weights
of our transformers are initialized randomly by sampling from a
truncated normal distribution. We conduct a distiller search using
the identical settings employed in the CNN experiment. Afterward,
we train the Vision Transformer (ViT) using the optimal distiller
obtained, with ResNet-56 serving as the CNN teacher. The training
process involves images of 224× 224 resolution for 300 epochs,
employing an initial learning rate of 5e-4 and a weight decay of
0.05, while utilizing the AdamW optimizer. A batch size of 128 is
utilized, and the learning rate schedule follows the cosine policy.
Similar to DeiT, Auto-KD incorporates a distillation token with a
distilling head serving as the proxy model.

1.4. Experiments on Object Detection.

Dataset.We assess the performance of Auto-KD using the MS-
COCO dataset [17]. This dataset comprises an extensive collec-
tion of over 120,000 images, spanning 80 distinct categories. To
evaluate the effectiveness of Auto-KD, we conduct performance
evaluations on the MS-COCO validation set.
Implementation.We employ the Auto-KD approach to enhance
two popular object detection frameworks: the two-stage detector,
exemplified by Faster R-CNN [22], and the one-stage detector,
represented by RetinaNet
citefocal. These frameworks are widely utilized in the field of object
detection. We initialize the backbone of these models with weights
pre-trained on the ImageNet dataset [23]. Following common
practice
citefocal, all models are trained using a 2× learning schedule,
spanning 24 epochs. Data augmentation includes horizontal image
flipping.

2. Experiments on Semantic Segmentation
Datasets. Cityscapes is an arduous benchmark dataset that has
been compiled from 50 cities, primarily focused on comprehending
the urban environment. It comprises a collection of 5,000 metic-
ulously annotated images, encompassing 19 distinct classes. The
dataset is divided into three sets: training, validation, and testing,
consisting of 2,975, 500, and 1,525 images, respectively. Addi-
tionally, Cityscapes includes an additional set of 20,000 coarsely
labeled images, which were utilized in the knowledge distillation
experiments.
Implementation details. In all experiments conducted in this
section, we employ the mean Intersection-over-Union (mIoU) as
the evaluation metric. The results are reported in the single-scale
evaluation setting. Following prior works [20], we initially adopt
DeeplabV3 [1] with a ResNet101 backbone [7] as the teacher model.
For the other distillation methods, we explore DeepLabV3 models
with the ResNet18 backbone. In the case of Auto-KD, we select
DeepLabV3 with students obtained through the Auto-KD search
on the ImageNet dataset. During the distillation process, we utilize
the SGD optimizer with a poly-learning-rate policy. Each training
image is randomly cropped into 512×512 pixels. The batch size is
set to 8, and unless specified otherwise, the models are trained for
40K iterations.
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