
Supplementary Material for ”Boosting Multi-modal Model Performance with
Adaptive Gradient Modulation”

A. Experiment Details

A.1. Datasets

AV-MNIST [9]. The dataset is collected for multi-media
classification tasks by assembling visual and audio features.
The first modality, disturbed image, is made of the 28× 28
PCA-projected MNIST images. The second modality, au-
dio, is made of audio samples on 112 × 122 spectrograms.
The whole dataset includes 70, 000 samples, and the divi-
sion of the training set and validation set is 6/1. We ran-
domly selected 10% samples from the training set and vali-
dation set to create a development set.

UR-Funny [3]. The dataset is created for affective com-
puting tasks that detect humor by the usage of words (text),
gestures(vision) and prosodic cues (acoustic). This dataset
is collected from the TED talks and uses an equal number of
binary labels for each sample. In the experiments, the split
of the dataset follows[5].

CREMA-D [1]. The dataset is devised for speech emo-
tion recognition with facial and vocal emotional expres-
sions. This dataset contains 6 most usual emotions: angry,
happy, sad, neutral, discarding, disgust, and fear. The whole
dataset is randomly divided into 6, 027-sample training set
and 669-sample validation set, as well as 745-sample test-
ing set.

AVE [8]. The dataset is an Audio-V isual Event (AVE)
dataset for audio-visual event localization. This dataset
consists of 4, 143 ten-second video clips and has 28 event
classes for each clip together with frame-level annotations.
All videos are collected from YouTube. In the experiments,
we follow [8] in splitting and pre-processing the dataset.

CMU-MOSEI [10]. This dataset is collected for
sentence-level sentiment analysis and emotion recognition,
containing 23, 454 movie review clips with more than
65.9 hours of YouTube video by 1, 000 speakers. In our
experiments, we only use text and audio modalities, and

the train/valid/test set is split into 16, 327/1, 871/4, 662
samples, respectively.

Kinetics-Sound [4]. The dataset is a multi-modal dataset
for human action recognition in videos. The original dataset
contains 400 human action classes with at least 400 video
clips for each class. In our experiments, we randomly se-
lect 30 classes, of which the number of classes is close
to OGM-GE [6]. This dataset contains 25956 video clips
(21545 training, 1494 validation, 2917 test).

A.2. Implementation details

For the AV-MNIST dataset, we use ResNet18-based net-
works as the audio and visual encoders. Following [2], we
reduce the number of input channels from 3 to 1. For the
UR-Funny dataset, we use a 4-layer Transformer as the en-
coder for each modality. The number of attention heads is 8
and the hidden dimension is 768. In the experiments on the
above two datasets, models are trained using the the SGD
optimizer with a 0.9 momentum and a 1e-4 weight decay.
The initial learning rate is 1e-4, and it decays with a rate of
0.9 every 70 epochs. The batch size is set to 64.

For the CREMA-D and Kinetics-Sound dataset, we fol-
low the experimental settings used in OGM-GE [6], except
for the CREMA-D decay rate in the learning rate scheduler.
This decay rate is now set to 0.9 to make our training more
stable.

For the AVE and CMU-MOSEI datasets, we adopt the
same experimental settings in [11] and [10], respectively.

The linear predictor in Section 3.2.2 is implemented with
the sklearn package. Specifically, we use ridge regres-
sion with the regularization strength λ = 120 for all the
situations. The value of λ is chosen so that the competi-
tion strength converges on the validation sets across all the
datasets.

In all the experiments in the main text, the random seed
is set to 999 for reproducibility.

B. Sanity Check
In this section, we justify the definition of the proposed

competition strength metric. As linear probing is a standard
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AV-MNIST Acc Acca Accv da dv
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=9
9 Ca - 39.73 - - -

Cv - - 65.30 - -
Joint-Train 69.77 16.05 55.83 0.7903 0.1341

se
ed

=9
99 Ca - 39.61 - - -

Cv - - 65.14 - -
Joint-Train 69.77 16.05 55.83 0.7838 0.1408

E
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on
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=9
9 Ca - 41.21 - - -

Cv - - 65.27 - -
Joint-Train 71.15 24.28 60.14 0.7219 0.1999

se
ed

=9
99 Ca - 41.60 - - -

Cv - - 65.46 - -
Joint-Train 71.15 24.28 60.14 0.7668 0.1825

Table 5. Comparing the effect of differently randomly initialized
mono-modal concepts on competition strength in the AV-MNIST
dataset joint-training. seed is the random seed we set in our exper-
iments. Ca and Cv indicate the performance of audio and visual
modality concepts, respectively.

AV-MNIST Acc Acca Accv da dv
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ro

-p
ad Ca - 41.60 - - -

Cv - - 65.46 - -
Joint-Train 71.15 24.28 60.14 0.7668 0.1825

ra
nd

-p
ad Ca - 40.63 - - -

Cv - - 65.26 - -
Joint-Train 71.15 24.28 60.14 0.7147 0.2324

Table 6. Comparing the impact of mono-modal concept with dif-
ferent padding methods on competition strength in the AV-MNIST
dataset early fusion joint-training. zero-pad indicates padding the
input modality with zero vector and rand-pad pad input modality
with normal distribution.

technique, we are mostly concerned about the robustness of
the mono-modal concept.

To this end, We first train the mono-modal concept with
different random seeds in initialization on the AV-MNIST
dataset. The result is shown in Table 5. As expected, corre-
sponding competition strengths are of similar magnitudes.

We then compare the cases where the mono-modal con-
cepts are computed using different padding methods. Recall
that we have adopted zero-padding for 0m to represent the
absence of the modality m. In this control experiment, we
use the random-padding instead. In other words, all the ele-
ments in 0m are drawn independently from the normal dis-
tribution N(0, 1). It is arguable that both the zero-padding
and random-padding stand for the competition-less state
as they carry no task-relevant information. Note that the
padding method only matters in the early and hybrid fusion
cases. Table 6 summarises the results on the AV-MNIST

dataset with early fusion models. Clearly, the values of
competition strength in the zero-padding case are close to
the corresponding ones in the random-padding case.

At last, we compare the performance of the mono-modal
concept in different fusion strategies. Recall that the mono-
modal concept is a function that maps the mono-modal in-
put to a vector in RK , which can be used for prediction. The
performance of the mono-modal concept refers to its pre-
diction accuracy and, hence, represents the amount of task-
relevant information in the corresponding modality. From
the results in Table 1 to 3, we find that the performance of
the mono-modal concept is very similar in the late and early
fusion cases on each dataset. It is noteworthy that the per-
formance of mono-model concepts in Tables 5 and 6 are
all close to each other as well. This is desirable since the
amount of task-relevant information should be independent
of specific models.

In summary, the results verify the robustness of the
mono-modal concept under different situations and indicate
that the competition strength is a well-defined metric.

C. Additional Results

Kinetics-Sound Acc Acca Accv da dv
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at

e
Fu

si
on Ca - 42.06 - - -

Cv - - 49.23 - -
Joint-Train 52.78 39.92 23.84 0.6392 0.7064
AGM 56.93 31.01 37.04 0.7726 0.5916

Fi
lM

Ca - 41.86 - - -
Cv - - 48.76 - -
Joint-Train 51.17 34.76 25.32 0.6416 0.6691
AGM 55.73 48.56 51.57 0.6861 0.5045

Table 7. Experiments on the Kinetics-Sound dataset with late fu-
sion and FiLM [7] strategies.

In this section, we present additional experiment results
on the Kinetics-Sound dataset with both the later fusion and
the FiLM fusion [7] strategies. Apart from the implemen-
tation of the fusion module for the FiLM case, the encoder
network and training parameters are the same as those in the
AVMNIST late fusion setting.

Table 7 shows the result on the Kinetics-Sound dataset
with late fusion and FiLM, the improvement on which are
3.15% and 3.56%, respectively. Comparing joint-train and
AGM, the competition strengths of the visual modality de-
crease for both fusion strategies, which demonstrates that
AGM pushes the model to rely on the more informative
modality. These additional results further demonstrate the
universal effectiveness of AGM.
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OGM-GE(RA) 70.43 18.81 55.87 0.7329 0.1362
AGM(1) 71.63 38.35 63.50 0.6849 0.1313
AGM-GE 72.03 40.24 64.52 0.7006 0.1215

E
-f AGM(1) 71.72 67.89 66.53 0.7640 0.1813

AGM-GE 71.88 35.88 67.89 0.7368 0.1798
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OGM-GE(RA) 64.28 60.69 25.41 0.4436 0.7423
AGM(1) 72.05 39.46 44.39 0.6370 0.6103
AGM-GE 78.03 45.44 50.22 0.6254 0.5152

E
-f AGM(1) 71.15 69.66 73.24 0.6507 0.6726

AGM-GE 81.02 75.49 77.73 0.8421 0.7583

Table 8. Experiments on AV-MNIST and CREMA-D with differ-
ent ablation experiments. OGM-GE(RA) indicates the OGM-GE
method discrepancy ratio toward the running average. AGM(1) is
our AGM method tunning toward 1. AGM-GE is our AGM with
Generalization Enhancement(GE).

D. Ablation Study

In this section, we provide an in-depth comparison be-
tween AGM and OGM-GE as their performance outstands
in our experiments. Specifically, we tune the AGM discrep-
ancy ratio towards 1 instead of the running average to justify
the usefulness of the running average as the reference. On
the other hand, we try to tune the discrepancy ratio in OGM-
GE toward the running average instead of simply 1 to see
whether it could improve the performance. We also inte-
grate our AGM with the generalization enhancement (GE)
technique in OGM-GE and run additional experiments to
test its comparability with our modulation method.

Table 8 shows the result of the above-mentioned exper-
iments on the AV-MNIST and CREMA-D datasets. The
running average of AGM tuning toward 1 improves the per-
formance compared to the joint-training case while being
worse than the one using the running average. It reflects
that the running average push model uses the modality with
more information. We find that the running average does
not improve the OGM-GE method, which attributes to that
AGM and OGM-GE adopt different ways to compute the
discrepancy ratio, the latter may not be compatible with the
running average. Unlike OGM-GE, GE does not improve
our AGM. One possible reason is that the running average
introduces additional fluctuations in the gradient which is
similar to the effect of the noise term in GE.
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