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In this supplementary material, we provide extra explanation and visualization for a better understanding of our paper.
Specifically, Appendix A provides more detailed derivations of the proposed spherical depth-normal model. By Appendix B,
Appendix C and Appendix D, we then present extra analysis and explanation on each component of our CORE losses, and
further indicate their indispensability. In Appendix E, we evaluate our method on KITTI dataset, conditioned on distance.
This experiment indicates that our method can make use of the depth-normal constraints to improve depth performance in
near scenes, and yet affect depth estimation in far scenes insignificantly. In Appendix F, we present histogram comparison
between depth estimates and ground truth depth, which indicates the effectiveness of our method on refining 3D geometry
estimation. In Appendix G, additional qualitative results are presented in addition to those shown in our main manuscript.
Appendix H shows some failure cases of surface normal prediction in outdoor scenes, which will be further investigated as
our future work. As the same as our main manuscript, notations with hat mean corresponding estimates, e.g., θ̂ means the
estimation on θ.

A. Derivations of spherical depth-normal model
A.1. Depth-normal association at each individual pixel.

Let’s define a point P0 = (X0, Y0, Z0) on a 3D scene and the corresponding unit surface normal n = (n1, n2, n3) with
∥n∥2 = 1 of the tangent plane. According to the plane equation, an arbitrary point P at the tangent plane could be written
as:

n · (P−P0) = 0 (1)

where · mean the dot product between two vectors. Write Eq. (1) out in components:

n1X + n2Y + n3Z = n4 (2)

where n4 = n1X0 + n2Y0 + n3Z0. Recall the pinhole camera model that projects the 3D points P = (X,Y, Z) onto the 2D
image plane at pixel coordinates (u, v): uv
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where, (cx, cy) and (fx, fy) are camera principal points and focal lengths respectively. Given Z at pixel coordinates as
Z(u, v), solving X and Y from Eq. (3) and inserting them into Eq. (2) give:
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where Z−1 is the per-pixel reciprocal of the depth map, namely the inverse depth map. We rewrite the unit surface normal n
as spherical polar coordinates:

n = (sin θ cosϕ, sin θ sinϕ, cos θ), (5)

where θ ∈ [−π/2, π/2] and ϕ ∈ (−π, π] mean the polar and azimuthal angles respectively. Inserting Eq. (5) to Eq. (4) gives:
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A.2. Depth-normal association between local pixels.

Eq. (6) could be re-formulated as:
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This term is not related to u and v.

(7)

By applying the partial derivatives of u and v to the both sides of Eq. (7), we have the following equation:

(
sin θ cosϕ

n4fx
,
sin θ sinϕ

n4fy
) = ∇(Z−1)(u, v) (8)

At last, Eq. (6) and Eq. (8) are equation (1) and equation (2) in our main manuscript respectively.

B. More Analysis on APR
B.1. The choice of power for polar regularization

We use power of 1/4 on n̂3
1 for our polar regularization in our main manuscript, the purpose of which is to push the

minimum regularization to around ±π/2 for its effectiveness along all the definition domain of θ̂ ∈ (−π/2,+π/2). In
addition, regularization minimums around ±π/2 benefit CPR loss to effectively suppress bias induced by APR (see details
in Appendix D.2). To visualize the effect of power on n̂3, let’s define the power on n̂3 as κ. The polar regularizer becomes:

gi = − ln(4n̂κ
3 (1− n̂κ

3 )). (9)

As presented in Fig. 1a, with decreasing of κ, the minimum regularization is progressively pushed to ±π/2. Empirically,
κ = 1/4 is enough to set regularization minimum close to ±π/2.

(a) The choice of κ. (b) The APR.

Figure 1: The choice of power for polar regularization.

1n̂1 = sin θ̂ cos ϕ̂, n̂2 = sin θ̂ sin ϕ̂, n̂3 = cos θ̂



C. More Analysis on CPD loss
C.1. The distribution of ∇(Z−1)

From below Fig. 2, we can see the fact that ∇(Z−1) ∈ R2 has imbalanced data distribution, and the density is extremely
high around 0. This data distribution is usually unfriendly to the objectives of L1 or L2. As a result, we employ the cosine
similarity (the angular difference) as the objective in our CPD loss.

Figure 2: The distribution of ∇(Z−1). This figure is plotted with the valid data (Zi ̸= 0) from 16 random depth maps of
NYUv2 [6]. The top green histogram is the density of ∇u(Z

−1) and the right red histogram is the density of ∇v(Z
−1).

C.2. Persistent constraint on ϕ by CPD loss

Let’s define ∇(Z−1) = (du, dv). According to Eq. (8) and the definition of CPD loss in our main manuscript, the cosine
similarity si is calculated as:
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According to the above formulation, in most cases, CPD loss persistently guides ϕ̂, while θ̂ and n̂4 still degenerate. The
characteristic of CPD loss implies two underlying facts. One is that CPD loss facilitates the optimization and convergence on
ϕ̂, so that training process becomes friendly. The other one is that CPD loss is not able to counter the polar angle collapse, so
APR is crucial to recover the polar angle estimates from the collapse.

D. More Analysis on CPR loss
D.1. The absolute manner of CPR loss

Recall below Eq. (7) that is transformed from Eq. (6). To derive Eq. (8) from it, the term C has been discarded by the first
order partial derivatives of u and v. It means that Eq. (8) (CPD loss) guides estimation in a relative manner, which could not
absolutely satisfy Eq. (6) (CPR loss). There usually exists offsets defined by term C between absolute and relative estimates.
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This term C indicates the offset between absolute and relative estimate.



Meanwhile, CPD loss hardly contributes to regulate θ̂ as discussed in Appendix C.2. Thereby, even though ϕ̂ is constrained
by CPD loss and θ̂ is regularized by APR, the surface normal estimation could be still relative and biased. In order to counter
this, our CPR loss derived from Eq. (6) plays its critical role. Along with CPD loss that persistently constrains ϕ̂ and APR
that recovers the θ̂ from collapse, CPR loss compensates the absolute relationship by further adjusting estimation. In details,
the biases on θ̂ from APR are suppressed by CPR loss (see next Appendix D.2). At the same time, CPR loss leverages n̂4 in
a smooth L1 manner, which is more robust to noises and discontinuity. Eventually, the surface normal estimation is rectified
and polished, which has been quantitatively analyzed and quantitatively visualized in our main manuscript (see ablation
studies in our main manuscript).

D.2. APR bias suppression by CPR loss

As shown in Fig. 1b, APR has stable minimums around ±π/2, which could incur bias on θ̂ at these minimums. Without
special treatment on θ̂, CPD loss with APR is confronted with this biased situation, which is presented in Fig. 3 (see the
red curve). The density of polar angle estimates is abnormally accumulated around ±π/2. However, ground truth is low on
density near ±π/2 (see the orange histogram).

Figure 3: The APR bias suppression by CPR loss. The distributions are from the NYUv2 dataset as an example. The green
and red curves are the envelopes of the distributions on polar angle estimates (expressed by cos θ) with and without CPR
respectively. The orange histogram is from the ground truth. CPR loss effectively rectifies the biased distribution.

The absolute manner of CPR loss contributes to suppress the polar angle bias from APR (see the green curve in Fig. 3).
The reason is that the majority of polar angle estimates near ±π/2 contradicts the absolute constraint defined by CPR loss.
Specifically, 3D scenes with θ = ±π/2 describe the invisible planes parallel to the vision sight, so the scenes with θ ≈ ±π/2
(the APR minimums) should be rare in common real world scenes because of visibility. This prior is also the reason why
we adjust APR minimums to near ±π/2 via power of 1/4. When more polar angle estimates are skewed to ≈ ±π/2 by
APR, the reasonable depth map (low density on θ̂ ≈ ±π/2) becomes more inconsistent to these biased surface normals (high
density on θ̂ ≈ ±π/2), which leads to the increasing of CPR loss. This contradiction prevents APR to skew the polar angle
estimates, and it is clearly observed from the training loss, as shown in Fig. 4.

Figure 4: The curves of CORE losses during training. CPR loss and APR are obviously adversarial at early training stage,
where the dramatic dropping on APR greatly increases CPR loss.



E. KITTI Evaluation conditioned on distance

Figure 5: The Abs.Rel conditioned on distance. The green triangle indicates mean. The subplot shows the mean Abs.Rel
within a depth threshold.

We conduct KITTI evaluation conditioned with distance in Fig. 5. Each box plot represents statistics of pixel Abs.Rel
falling in the depth bin. The mean Abs.Rel per bin and within a depth threshold (subplot) both indicate evidently that our
design enhances the depth estimation for near scenes ( < 20m), especially for closer scenes (< 5m). From box plots, we can
observe more statistic details such as max error and median, which are mostly ameliorated for near scenes as well. When
distance > 50m, our Abs.Rel becomes slightly worse. However, the depth density in this range is low, and the overall impact
is insignificant.

F. Geometry Consistency
As shown in Fig. 6, we spot that the depth estimates by our method have more similar distribution of density to the ground

truth, including subtle trend of the envelope (marked by red markers). This fact implies that our method can distinguish more
consistent geometry to the ground truth from the scenes, which is similarly demonstrated by the point cloud visualization in
our main manuscript. The reason lies in that our CORE losses mutually refine the depth the surface normals estimation for
better geometry information.

Figure 6: Illustration of geometry consistency. Bottom row shows according histograms for the top. Our depth estimation
distinguishes more objects marked with red boxes, and the histogram has smaller Chi-square distance (on the top of the
histogram) to the ground truth.



G. More qualitative results
In the main manuscript, we demonstrated some qualitative results with NeWCRFs [7] enhanced by our method. Here,

we present additional qualitative results and comparison for BTS [5] and Adabins [1]. Also, various datasets [6, 3, 2] are
involved to demonstrate the effectiveness of our method, including depth and surface normal estimation.

G.1. NYUv2

With Fig. 7, we present the qualitative results on NYUv2 for BTS [5] and Adabins [1], and compare the results between
them and that enhanced by our method. Additionally, Fig. 8 illustrates more qualitative results of surface normal estimation
by our method.

(a) Input RGB. (b) BTS. (c) Ours(BTS). (d) Adabins. (e) Ours(Adabins). (f) GT depth.

Figure 7: More qualitative depth estimation results on NYUv2 for BTS [5] and Adabins [1]. Our method rectifies geometry
details and occlusions for the original approaches, and provides more consistent depth map to the ground truth. Zoom-in and
best view in color.



(a) Input RGB. (b) Ours(BTS). (c) Ours(Adabins). (d) Ours(NeWCRFs). (e) GT Normal.

Figure 8: Qualitative results on the weakly-supervised surface normal prediction. NeWCRFs [7] with our method indicates
less noises for surface normal estimation. Our method enables BTS [5], Adabins [1] and NewCRFs [7] to gain the capability
of surface normal prediction. Zoom-in and best view in color.



G.2. ScanNetv2 (cross-evaluation)

We employ Fig. 9 to demonstrate some qualitative results on ScanNetv2 for both depth and surface normal prediction. The
results are predicted by our model well trained on NYUv2 without any fine-tuning. Ground-truth surface normals in Fig. 9
are generated by FrameNet [4].

(a) Input RGB. (b) Our depth. (c) GT Depth. (d) Our Normal. (e) GT Normal.

Figure 9: Qualitative results on ScanNetv2 (cross-evaluation) with NeWCRFs [7] enhanced by our method. The ground truth
surface normals are generated by [4]. Zoom-in and best view in color.



G.3. KITTI

As presented in our main manuscript, improvement of depth estimation by our method on KITTI are not as significant as
that on NYUv2. However, some geometry rectifications are still observed in Fig. 10. Along with depth estimation, in Fig. 11,
we demonstrate the qualitative results of surface normal prediction for KITTI as well.

(a) Input RGB. (b) NeWCRFs. (c) Ours(NeWCRFs).

Figure 10: Qualitative depth estimation on KITTI with NeWCRFs [7] and our method. Some geometry details, especially
the occlusion between objects, have been rectified by our method, as indicated by red markers and boxes. The co-planar
information helps to distinguish the belonging, when two objects have occlusion in space. Zoom-in and best view in color.

(a) Input RGB. (b) Ours(Adabins). (c) Ours(NeWCRFs).

Figure 11: Qualitative surface normal predictions on KITTI. The NeWCRFs enhanced by our method provides less noisy
surface normal prediction. Zoom-in and best view in color.



H. Failure cases
Our method has some difficulties to make a decent surface normal prediction in some outdoor scenes (e.g., KITTI dataset)

as shown in Fig. 12. Surface normal estimates for KITTI are not able to provide as many details as the prediction results on
NYUv2 and ScanNetv2 that are indoor scenes.

We speculate a few reasons for the phenomenon and failure. Firstly, the sparse depth map provided by KITTI could be
a reason for the lack of geometry details. Secondly, distortions introduced by the camera with large Field of View (FoV)
incur noisy surface normal prediction near image borders and corners. Thirdly, the co-planar assumption is not restrictively
established in some outdoor scenes, especially for the crowds and woods at far distance. All these will be investigated in the
future work.

(a) Input RGB. (b) Ours(NeWCRFs).

Figure 12: Failure cases of surface normal prediction on KITTI. In some outdoor scenes, our surface normal prediction would
have difficulties to distinguish geometry details. Zoom-in and best view in color.

References
[1] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. Adabins: Depth estimation using adaptive bins. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021. 6, 7
[2] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-annotated

3d reconstructions of indoor scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. 6

[3] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti dataset. International Journal of
Robotics Research, 32:1231–1237, 2012. 6

[4] Jingwei Huang, Yichao Zhou, Thomas Funkhouser, and Leonidas Guibas. Framenet: Learning local canonical frames of 3d surfaces
from a single rgb image. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019. 8

[5] Jin Han Lee, Myung-Kyu Han, Dong Wook Ko, and Il Hong Suh. From big to small: Multi-scale local planar guidance for monocular
depth estimation. In arXiv preprint arXiv:1907.10326, 2019. 6, 7

[6] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support inference from rgbd images. In
Proceedings of the European Conference on Computer Vision (ECCV), 2012. 3, 6

[7] Weihao Yuan, Xiaodong Gu, Zuozhuo Dai, Siyu Zhu, and Ping Tan. Neuralwindow fully-connected crfs for monocular depth estima-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022. 6, 7, 8, 9


	. Derivations of spherical depth-normal model
	. Depth-normal association at each individual pixel.
	. Depth-normal association between local pixels.

	. More Analysis on APR
	. The choice of power for polar regularization

	. More Analysis on CPD loss
	. The distribution of (Z-1)
	. Persistent constraint on  by CPD loss

	. More Analysis on CPR loss
	. The absolute manner of CPR loss
	. APR bias suppression by CPR loss

	. KITTI Evaluation conditioned on distance
	. Geometry Consistency
	. More qualitative results
	. NYUv2
	. ScanNetv2 (cross-evaluation)
	. KITTI

	. Failure cases

