
ClimateNeRF: Extreme Weather Synthesis in Neural Radiance Field

—Supplementary Material —

Yuan Li1,2⇤ Zhi-Hao Lin1⇤ David Forsyth1 Jia-Bin Huang3 Shenlong Wang1

1University of Illinois Urbana-Champaign 2Zhejiang University
3University of Maryland, College Park

In this supplementary material, we describe implementation details of the simulation framework in Section 1 and provide
an ablation study to validate our design choices in Section 2. ClimateNeRF is highly controllable and is demonstrated in
Sect 3. We present extensive qualitative and quantitative results in Section 4 and Section 5, respectively.

1. Implementation Details

3D Scene Reconstruction Our implementation is based on [21]. We use spatial hashing grid [18] to represent the 3D
scene. The entire space contains a multi-resolution feature grid {enc(x; ✓l)}L

l=1, where L is the total number of resolution
levels; ✓l are learnable parameters at each level. For a 3D point x 2 R

3, we index grids by a spatial hash function [31] and
fetch feature by interpolation and concatenation: � = cat{interp(x, enc(x; ✓l))}L

l=1. To keep spatial features intact at the
stylization stage and separate gradient flows between geometry and color, we develop a disentangled version of instant-NGP
inspired by [3, 28]. Each voxel maintains a geometry code �� and appearance code �app. The geometry code �� encodes
opacity and the appearance code �app contains color, semantic and normal information:

�� = cat{interp(x, enc(x; ✓l
�
))}L�

l=1, �app = cat{interp(x, enc(x; ✓l
app

))}Lapp

l=1 , (1)

where interp stands for linear interpolation, cat denotes concatenation.
Inspired by [18], we use shallow MLPs to predict densities �, colors c, semantic logits s and surface normal values

n respectively from geometry features �� and appearance features �app. We also incorporate low-dimensional per-frame
appearance embeddings {`(a)

i
}N
i=1 [14] to balance different lighting conditions across images. With hash grids and MLPs, we

have the following function to reconstruct the original scene:

(�, c, s,n) = F✓(x,d, `
(a)
i

, ��, �app) (2)

Following volume rendering and alpha blending [16], we render the color C(r) for ray r and its semantic logit S(r) [39].

C(r) =
NX

i=1

Ti(1� exp(��i�i))ci; S(r) =
NX

i=1

Ti(1� exp(��i�i))si,where Ti = exp

0

@�
i�1X

j=1

�j�j

1

A (3)

We apply softmax to semantic logits S(r) to obtain semantic probabilities {p(r)l}L
l=1 for all labels. During training, we

perform MSE loss LC and cross-entropy loss LS for rendered colors and semantic logits using ground truth color Cgt(r) and
2D semantic logits {p̂(r)l}L

l=1 predicted by segformer [35] pretrained on cityscape dataset [6]. Moreover, since we leverage
pseudo-semantic labels, we detach densities � when rendering S(r). Similar to Ref-NeRF [32], we use the density gradient



normals n̂ = � r�
kr�k [2, 26] to guide the predicted surface normals n using a weighted MSE loss:

LC =
X

r2R
kC(r)� Cgt(r)k22 , (4)

LS = �
X

r2R
[
X

l2L

p̂(r)l log p(r)l] , (5)

Ln =
X

r2R

NX

i=N

wikni � n̂ik22 , (6)

where wi = Ti(1 � exp(��i�i)) denotes the detached weight in Eq.3. We also leverage distortion loss Ldist [1, 29] to
mitigate floaters in the reconstruction results:

Ldist =
N�1X

i=0

N�1X

j=0

wiwj

����
ti + ti+1

2
� tj + tj+1

2

����+
1

3

N�1X

i=0

w
2
i
(ti+1 � ti) (7)

However, ngp model tends to create big ’blobs’ in the sky with distortion loss. We alleviate this by applying a simple penalty
Lsky =

P
r2R e�D(r) · {p̂(r) = p̂sky} where D(r) denotes the depth following Eq. 3 [37] and {·} is an indicator function

using 2D predicted semantic logits p̂. Moreover, we incorporate opacity loss LO = �
P

r2R O(r) logO(r) [21] to encourage
ray opacity being either 0 or 1 to avoid semi-transparent regions in reconstruction results. During our training time, our
model’s total loss is a weighted sum of the aforementioned losses:

L = LC + �SLS+�nLn + �distLdist + �skyLsky + �OLO (8)

Transient Object Occlusion To occlude transient objects like pedestrians or vehicles across views in tanks and temples
dataset [10], we follow [4] and create per-image learnable masks:

Mi(u, v) = F (u, v, i, �M ) , (9)

where (u, v) 2 R2, i denotes image coordinates and image index in all training images. F denotes a shallow MLP and �M is
the output of hash grids.

In such case, we change color reconstruction loss 4 following [4]:

LC =
X

r2R
M(r)kC(r)� Cgt(r)k22 + �M (1�M(r)) , (10)

where the second term is used to prevent the mask from predicting everything transient.

Geometry improvements As mentioned in the limitation subsection in the main paper and can be seen in Fig. 15,
ClimateNeRF strongly relies upon high-quality geometry. To improve geometry estimations for KITTI-360 dataset [12], we
further use the monocular dense depth Dmono and impose a depth loss:

Ldepth =
X

r2R
k((wD(r) + d)�Dmono(r))k22 , (11)

where w and d are used to align the predicted depth from NeRF D(r) and monocular depth cue Dmono(r) with a least-square
criterion [37, 7, 22]. As shown in Fig.1, holes on the ground are “filled” thanks to the supervisions from monocular dense
depth.

Training Details Our implementations of the hash grids and distortion loss follow [17, 21]. For the scale and resolution
of the hash grid in our model, we get the inspiration from [28], where appearance features allocate more grids with finer
resolutions. Geometry hash grids have 16 levels and 219 entries at most per level, while appearance hash grids have 32 levels
and 221 entries at most per level. For Tanks and Temples dataset [10] and MipNeRF-360 dataset [1], side length of hash grids
is 16. Geometry MLP and appearance MLP have 128 neurons per layer and one hidden layer, while semantic MLP and normal
predicting MLP have 32 neurons per layer and one hidden layer. For our default loss weights in Eq. 8, we set �S = 4�2,
�n = 7�4, �dist = 3�4, �sky = 1�1 and �O = 2�4.



(a) w/o monocular dense depth Dmono (b) w/ monocular dense depth Dmono

Figure 1: Ablation on monocular dense depth supervision Normal estimations in (b) shows that leveraging monocular dense
depth removes artifacts on the road.

1.1. Flood Simulation

Given that water is mostly muddy and non-transparent, we approximate the opacity by checking a point above or under the
water’s surface:

O�(x;F
0
✓
) =

(
1 if nw(x� ow) = 0

0 otherwise
(12)

Water is highly reflective, yet the microfacet ripples sometimes make the water look glossy. To simulate these effects, we
leverage a Spherical Gaussian (SG) to approximate the BRDF on the reflective water surface:

B�(x,�d,!i, N�(x)) = exp�(�!i·dr�1) (13)

where SG lobe axis is dr = d� 2(d ·N�(x))N�(x),, and � 2 R+ is the lobe sharpness, controlling the glossy effects.
We use sigma point-based sampling for rendering water. Specifically, the camera ray r(t) = o+ td is cast from the camera

and hits the water surface at position x. We compute the observed color by a sampling-based approximation of the rendering
equation:

c� = (1�R)cw +R

5X

i=1

L(x,!i)e
�(�!i·dr�1)

, (14)

where L(x,!i) = C(r) is the NeRF ray color (Eq. 3), representing the incident light color hitting x along direction !i.
R 2 (0, 1) is the reflectance index determined by viewing direction d and normal N�(x), which enables the system to simulate
the Fresnel effect on the water. To approximate the integral in rendering equation [9], we adopt the sigma-point method [15, 33]
and sample 5 rays from the position x, including reflection direction dr and nearby four rays. In short, ClimateNeRF simulates
Fresnel effect, glossy reflection, and wave dynamics.]

Fresnel Effect When the light hits the water’s surface, the amount of reflection and transmission is determined by the
incident and normal directions and is described by the Fresnel effect. The angle between normal and incident rays is denoted
by ✓i, and the angle between normal and refracted ray in water is ✓t. According to Snell’s Law: ri✓i = rt✓t, where ri = 1 is
the refraction index of air and rt = 1.33 is the refraction index of water in our experiments, which is also consistent with
real-world water properties. Next, the reflectance R in Eq. 14 is computed by:

R =
Rs +Rp

2
, Rs =


sin(✓t � ✓i)

sin(✓t + ✓i)

�2
, Rp =


tan(✓t � ✓i)

tan(✓t + ✓i)

�2
(15)

where Rs and Rp are the reflectances for s-polarized and p-polarized light, respectively. Modeling the Fresnel effect in our
flood simulation pipeline makes the water far from the camera (larger ✓i) have higher R and looks more like a mirror. The
water nearby (smaller ✓i) has lower R and shows watercolor, enhancing the simulation’s realism.

Refraction Effect Refraction occurs when light transports from one medium to another. Modeling such an effect helps
simulate clear water. With a ray direction, surface normal, and refraction index rt of the water, ClimateNeRF calculates the
refraction direction !t according to Snell’s Law, and retrieves color with volume rendering along !t. Next, we can simulate
underwater scenes following [25].

c� = (1�R)(tc(x)L(x,!t) + (1� tc(x)cw) +R

5X

i=1

L(x,!i)e
�(�!i·dr�1)

, (16)



where tc(x) = e
��cD(x,!t) and D(x,!t) denotes the geometry depth alone refraction direction. Consequently, ClimateN-

eRF can simulate reflection and refraction, simulating clear and muddy water with controllable parameter �c.

1.2. Snow Simulation

For any point x in the space, we calculate the snow’s density of x in a particle-based manner. We first figure out a set of N
particles as metaballs’ centers {x(p)

i
}N
i=1 with densities {�(p)

i
}N
i=1 and metaball radius {R(p)

i
}N
i=1 around x. Then we sum up

the densities calculated by kernel function K(r,R,�o).

�snow(x) =
NX

i=1

�K(x,x(p)
i

),

where �K(x,x(p)
i

) = K(kx� x(p)
i

k2, R(p)
i

,�
(p)
i

)Vg(x
(p)
i

,!s),

(17)

where �
(p)
i

is defined by weights during volume rendering 3 for �✓ of F 0
✓
. More details are shown in Section 1.3. We denote

Vg(x
(p)
i

,!s) as the transparency along snow falling direction !s retrieved from a pre-trained visibility network based on
pre-trained NeRF’s geometry to simulate snow occlusions. When training the visibility network, we perturb snow-falling
directions within a small angle to soften snow boundaries. During rendering, we identify snow surface by a threshold ⌧snow and
a hyperparameter a:

O�(x;F
0
✓
) =

1

1 + e�a(x�snow�⌧snow)
�snow, (18)

The BRDF of snow particles is set as spatially-varying diffuse color c�(x
(p)
i

) close to pure white multiplied by the average
illumination of the scene. Furthermore, since the snow is semi-transmissive, the subsurface scattering effect [19] will light the
snow’s shadowed part. To simulate such effect, we leverage warp lighting function [8] �(nK,nl, ��) based on normalized
surface normal nK, light vector nl and hyperparameter ��. We use 2D shadow predictions [5] and bake shadow confidence
Vs(x) 2 [0, 1] on pre-trained NeRF’s geometry using L2 loss. For an arbitrary point x in space, the color of point x is a
weighted sum of {c(p)

i
2 R1}N

i=1 based on kernel function:

c�(x) =

P
N

i=1 �K(x,x(p)
i

)
c(p)
i +c0

1+c0
(�sVs(x

(p)
i

) + Vs0)
P

N

i=1 �K(x,x(p)
i

)
�(nK(x),nl, ��) , (19)

where �(nK(x),nl, ��) =
n(x)·nl+��

1+��
and c0(p)

i +c0

1+c0
is used to approximate a high albedo for snow and c0 is a hyperparameter.

To recast shadow on snow, we let �s and Vs0 in Eq. 19 be hyperparameters. See Figure 11 for example. Surface normal
values of metaballs are still calculated in a gradient-based manner. Moreover, we stylize the scene to match the color tones of
different weather conditions, as shown in Fig. 12.

1.3. Extensions

Bake Editing When simulating physical entities, especially snow, rendering will be time-consuming if we straightly let
snow fall from the sky and do collision detection. Moreover, a lack of supervision in a bird’s eye view makes depth estimation
for rays cast from the sky inaccurate. To mitigate the aforementioned issues, we fit the distribution of metaballs’ densities and
colors in a new model and fetch them in a particle-based manner. The new model outputs high densities where metaballs locate.
We use wi = Ti(1� exp(��i�i)) in Eq. 3 for surface detection since w(x) 2 [0, 1] is close to 1 when x is close to surfaces.
To identify surfaces where snow accumulates, we incorporate surface normals n and vertical axis n? to figure out metaballs’
density weights: w(p)

i
= 1

1+e
�a0(ni·n?�cos(✓0))wi where ✓0 is a hyperparameter. We then bake w

(p)
i

into a new model G�w :

w
(p)
�w

(x) = G�w(x) (20)

We also bake the gray scale [27] of c✓ from F✓ into a new model G�c to capture an approximation for light intensities and
shadows:

c(p)
�c

(x) = G�c(x) (21)

Then, we leverage the pre-trained G�w , G�c and do voxel sampling to fetch {�(p)
i

}N
i=1 and {c(p)

i
}N
i=1 from 8 vertices. Also,

to automatically alter metaballs’ radiuses according to the size of the surface, we sample nested grids with different side



(a) Sample near a large surface (b) Sample near a tiny surface

Figure 2: Visualization of voxel+nest sampling for Nn = 3. Instead of storing metaball information in point cloud, we
approximate metaball’s center density distributions with G�w . Our voxel+nest sampling helps capture different geometric
level of details [30], which makes large metaballs dominate at flat surfaces, and put smaller snow balls on thin structures.

lengths defined in a geometric progression. Moreover, we define metaballs’ radiuses by girds’ side lengths. Hence, Eq. 17 and
Eq. 19 can be rewritten as:

�snow(x) =
8NnX

i=1

�K(x,x(p)
i

); c�(x) =

P8Nn

i=1 �K(x,x(p)
i

)
c(p)
i +c0

1+c0
(�sVs(x

(p)
i

) + Vs0)
P8Nn

i=1 �K(x,x(p)
i

)
�(nK(x),nl, ��), (22)

where Nn is the number of nests. We calculate density �
(p) and albedo color c(p) for metaball centered at x(p) by �

(p) =

w
(p)
�w

(x(p))�0 and c(p) = c(p)
�c

(x) where �0 is a hyperparameter. See Fig. 2 for a visualization of this sampling strategy. If
stylization is done on the scene, we leverage the stylized model F 0

✓
and finetune the G�c to match new illumination conditions

while remaining G�w intact since F
0
✓

shares the same spatial information with F✓.

Anti-Aliasing When rendering with simulation, the high-frequency normal map changes on the physical entity surface
would lead to an aliasing effect. To alleviate such artifacts, we can render four times larger images with higher resolution and
perform anti-aliasing downsampling to the original resolution.

2. Ablation Study

To justify our design choices, we perform an ablation study of flood simulation, and the results are shown in Fig 3.
Specifically, we report the simulation results without certain technical components depicted in Sec. 1.1 of the main paper.

Fig 3 shows that all components are essential for realism. For example, vanishing point detection [13] makes the water
plane follow gravity direction; wave simulation adds ripples to the water surface; the Fresnel effect makes the water reflectance
view-dependent and physically plausible; the Glossy effect mimics realistic microfacet water surfaces with ripples; anti-aliasing
removes far-away high-frequency noises. In short, all components contribute to the realism of the simulation.

We also perform an ablation study on snow simulation to validate our approximate scattering rendering in Fig. 4. We
compare 1) pure white metaballs with spatial variant colors, 2) metaballs in a fully diffuse model, and 3) our full simulation.
Results demonstrate that our choice provides a more realistic rendering of accumulated snow.

To identify how scene geometry improvements benefit simulations, the ablation study of various technical components is
illustrated in Fig. 5. For example, appearance embeddings mitigate the floaters caused by varying exposures in training views,
and sky loss reduces blobs in the sky. Results show that our improvements in geometry reconstructions help simulate dense
snow covering in both foreground and background, thus offering more visually pleasing results.

3. Controllability

We further demonstrate that ClimateNeRF is highly controllable during the simulation process. In Fig. 6, our method
simulate different colors of smog and flood, water clearness, varying spatial frequency of water ripples, and distinct heights
of accumulated snow. The results show that our simulation framework is highly controllable by the users. Consequently,
scientists can use this framework to simulate accurate climate conditions depending on the projected climate in the future and
visualize the consequences corresponding to different actions taken by policymakers and the general public.



(a) Inaccurate plane geometry (b) No wave simulation (c) No Fresnel effect

(d) No glossy effect (e) No anti-aliasing (f) Full simulation

Figure 3: Ablation Study of Flood Simulation. (a) Without accurate plane geometry estimation with vanishing point
detection [13], the water surface deviates from gravity direction. (b) The surface is perfect planar without wave simulation,
which is not natural. (c) Fresnel effect makes the water far from the camera (with a larger incident angle) have higher
reflectance, and is consistent with physical rules. (d) The glossy effect makes the reflection more blurry and realistic (e) There
is much high-frequency noise around the water border without an anti-aliasing trick. (f) Our full flood simulation results.

Pure White Snow Only spatial variant colors Only diffuse model Full model

Figure 4: Ablation Study for Snow Simulation Though spatial variant colors capture local illumination conditions, they fail
to offer a sense of depth for snow. Moreover, the diffuse model cannot simulate snow’s scattering effects.

4. Qualitative Results

We demonstrate more qualitative results is Fig. 7, Fig. 8, Fig. 9, Fig. 10, and Fig. 11. For smog scene images in Fig. 7,
ClimateGAN [24] generates visually plausible results but fails to provide sharp boundaries, and 3D stylization attempts to
change the surface texture but makes the images overall darker. Our method simulates realistic visibility reduction effects
caused by smog, thanks to the geometry reconstruction.

The flood images are shown in Fig. 8. ClimateGAN++ [24] cannot reconstruct realistic reflection on the water surface,
Stable Diffusion [23] synthesize realistic water appearance but also produce random objects (e.g., cars, signs) in the scene,
which is not consistent across views. ClimateNeRF simulates realistic reflection and water ripples while being view-consistent.
This is better demonstrated in the supp video and website. In Fig. 9, we compare with other NeRF-editing baselines. We
first edit training images with ClimateGAN [24] or 2D stylization [11] and optimize the neural radiance field. While these



N
G

P
[1

8]
w

/o
ap

pe
ar

an
ce

em
be

dd
in

g
w

/o
di

st
or

tio
n

lo
ss

w
/o

no
rm

al

pr
ed

ic
tio

ns
w

/o
sk

y
lo

ss
O

ur
s

(a) Normal/Depth/RGB (d) Snow
Figure 5: Geometry Improvement for Simulation. Appearance embeddings [14] and distortion loss [1] mitigate floaters
or incomplete geometries while normal prediction loss [32] smooths predicted normals and leads a well interpolation in
background(see the snow coverage in the background). Sky loss alleviates ’blobs’ in the sky.

baseline methods produce more view-consistent rendering, they either generate severe floating artifacts to compensate for the
image inconsistency or cannot perform geometric editing, which sabotages realism. We also compare our FastPhotoStyle [11]
based stylization method with Artistic Radiance fields [38]. As shown in Fig. 13, we sustain more appearance details from the
original scene.



Figure 6: Controllable Climate Simulation. From the top row to the bottom row, we control (1) smog color (2) water
clearness (3) watercolor (4) spatial frequency of the wave. The frequency decreases from left to right. (5) snow height. We
control snow height by adjusting the threshold density ⌧snow.

5. Quantitative Results

No automatic quantitative score can holistically evaluate the quality of our weather-simulated movies. In this project, we
evaluate the synthesized videos with the state-of-the-art video quality assessment model UVQ [34] and report the results in
Table 1. The score ranges between interval (1, 5), where 1 indicates the lowest quality and 5 indicates the highest quality. As
the table shows, our smog simulation outperforms all other baselines, while it does not win Stable Diffusion [23] in flood
simulation and ClimateGAN [24] in snow simulation. That being said, UVQ prefers sharp videos instead of measuring
holistic realism. As shown in Fig. 10, baselines get a better quality score despite providing low-quality snow simulation
results, suggesting UVQ might not be a good metric for our task. Hence, despite demonstrating UVQ [34] results, we want to
emphasize that such metrics mainly focus on measuring the amount of low-level degradation (such as blurriness and noise),
which cannot faithfully reproduce human evaluation on realism. Having a good video quality score on simulation remains an
open topic.



Original ClimateGAN [24] 3D Stylization Ours

Figure 7: Smog simulation comparison.



Original ClimateGAN++ [24] Stable Diffusion [23] Ours

Figure 8: Flood simulation comparison.

Original ClimateGAN [24]+NeRF 3D Stylization Ours

Figure 9: NeRF editing for flood simulation. We tested the ClimateGAN image + NeRF training baseline, but the results are
blurry due to inconsistent inputs. 3D stylization baseline is a NeRF trained on stylized images.



Original Swapping Autoencoder [20] 3D stylization Ours

Figure 10: Snow simulation comparison.



Figure 11: Simulation on Urban Driving Scenes.

(a) Original NeRF rendering (b) Original NeRF + snow (c) NeRF with stylization (d) NeRF with stylization + snow

Figure 12: Stylization. Performing snow simulation with the original NeRF model leads to incompatible scene appearance
(e.g., snow on green vegetations). We address this issue by first finetuning the appearance of the NeRF model to match the
style of the provided style image. Our snow simulation on the stylized NeRF model shows visually more appealing results.

Style Image from [36] Original ARF [38] 3D stylization

Figure 13: Comparison with Artistic Radiance Fields [38]



C
lim

at
eG

A
N

++
[2

4]
St

ab
le

D
iff

us
io

n
[2

3]
O

ur
s

t = 0 t = 40 t = 80 t = 120 t = 160

Figure 14: View Consistency Comparison. We show flood simulation in Playground scene and time step t increases from left
to right. ClimateGAN++ [24] (Top) cannot generate realistic reflection, Stable Diffusion [23] (Middle) synthesizes different
objects in each views. Ours (Bottom) simulate photorealistic and consistent reflection and ripples.

(a) Original NeRF rendering (b) Climate NeRF rendering (c) Depth rendering (d) Surface normal rendering

Figure 15: Limitations. Snow simulation on KITT-360 [12] dataset fails to cover a shadowed road due to wrong geometry.

Smog Flood Snow

Original GAN 3D Style Ours GAN GAN++ Diffusion Ours GAN 3D Style Ours
Family 3.434 3.426 3.425 3.437 3.408 3.413 3.416 3.424 3.434 3.434 3.431
Horse 3.426 3.422 3.422 3.432 3.409 3.412 3.416 3.422 3.435 3.424 3.421
Playground 3.409 3.402 3.403 3.412 3.400 3.402 3.409 3.404 3.427 3.412 3.415
Train 3.406 3.396 3.407 3.407 3.401 3.402 3.410 3.407 3.417 3.411 3.408
Truck 3.425 3.424 3.424 3.431 3.404 3.403 3.424 3.413 3.431 3.424 3.416

Table 1: Video Quality Assessment. We evaluate the video quality with Google’s Universal Video Quality (UVQ) model [34].



References

[1] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded anti-aliased neural
radiance fields. In CVPR, 2022. 2, 7

[2] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Barron, Ce Liu, and Hendrik P.A. Lensch. Nerd: Neural reflectance
decomposition from image collections. In ICCV, 2021. 2

[3] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields. ECCV, 2022. 1
[4] Xingyu Chen, Qi Zhang, Xiaoyu Li, Yue Chen, Ying Feng, Xuan Wang, and Jue Wang. Hallucinated neural radiance fields in the wild.

In CVPR, 2022. 2
[5] Zhihao Chen, Lei Zhu, Liang Wan, Song Wang, Wei Feng, and Pheng-Ann Heng. A multi-task mean teacher for semi-supervised

shadow detection. In CVPR, pages 5611–5620, 2020. 4
[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth,

and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In CVPR, 2016. 1
[7] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image using a multi-scale deep network.

NeurIPS, 2014. 2
[8] Simon Green. Real-time approximations to subsurface scattering. GPU Gems, 1:263–278, 2004. 4
[9] James T Kajiya. The rendering equation. In Proceedings of the 13th annual conference on Computer graphics and interactive

techniques, 1986. 3
[10] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking large-scale scene reconstruction.

ACM TOG, 2017. 2
[11] Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, and Jan Kautz. A closed-form solution to photorealistic image stylization. In

ECCV, 2018. 6, 7
[12] Yiyi Liao, Jun Xie, and Andreas Geiger. Kitti-360: A novel dataset and benchmarks for urban scene understanding in 2d and 3d. IEEE

TPAMI, 2022. 2, 13
[13] Xiaohu Lu, Jian Yaoy, Haoang Li, Yahui Liu, and Xiaofeng Zhang. 2-line exhaustive searching for real-time vanishing point estimation

in manhattan world. In WACV. IEEE, 2017. 5, 6
[14] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duckworth. Nerf in

the wild: Neural radiance fields for unconstrained photo collections. In CVPR, 2021. 1, 7
[15] Henrique MT Menegaz, João Y Ishihara, Geovany A Borges, and Alessandro N Vargas. A systematization of the unscented kalman

filter theory. IEEE Transactions on automatic control, 2015. 3
[16] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes

as neural radiance fields for view synthesis. In ECCV, 2020. 1
[17] Thomas Müller. tiny-cuda-nn, 4 2021. 2
[18] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives with a multiresolution hash

encoding. ACM TOG, 2022. 1, 7
[19] Tomoyuki Nishita, Hiroshi Iwasaki, Yoshinori Dobashi, and Eihachiro Nakamae. A modeling and rendering method for snow by using

metaballs. In Computer Graphics Forum, 1997. 4
[20] Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei Efros, and Richard Zhang. Swapping autoencoder for

deep image manipulation. NeurIPS, 2020. 11
[21] Chen Quei-An. ngp pl: a pytorch-lightning implementation of instant-ngp, 2022. 1, 2
[22] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust monocular depth estimation:

Mixing datasets for zero-shot cross-dataset transfer. IEEE TPAMI, 2020. 2
[23] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent

diffusion models. In CVPR, 2022. 6, 8, 10, 13
[24] Victor Schmidt, Alexandra Sasha Luccioni, Mélisande Teng, Tianyu Zhang, Alexia Reynaud, Sunand Raghupathi, Gautier Cosne,

Adrien Juraver, Vahe Vardanyan, Alex Hernandez-Garcia, et al. Climategan: Raising climate change awareness by generating images
of floods. ICLR, 2022. 6, 8, 9, 10, 13

[25] Advaith Venkatramanan Sethuraman, Manikandasriram Srinivasan Ramanagopal, and Katherine A Skinner. Waternerf: Neural radiance
fields for underwater scenes. in arXiv, 2022. 3

[26] Pratul P Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall, and Jonathan T Barron. Nerv: Neural reflectance
and visibility fields for relighting and view synthesis. In CVPR, 2021. 2

[27] Michael Stokes. A standard default color space for the internet-srgb. http://www. color. org/contrib/sRGB. html, 1996. 4
[28] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction.

In CVPR, 2022. 1, 2
[29] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Improved direct voxel grid optimization for radiance fields reconstruction. in arXiv,

2022. 2



[30] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire,
and Sanja Fidler. Neural geometric level of detail: Real-time rendering with implicit 3d shapes. In CVPR, pages 11358–11367, 2021. 5

[31] Matthias Teschner, Bruno Heidelberger, Matthias Müller, Danat Pomerantes, and Markus H Gross. Optimized spatial hashing for
collision detection of deformable objects. In Vmv, 2003. 1

[32] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T. Barron, and Pratul P. Srinivasan. Ref-NeRF: Structured
view-dependent appearance for neural radiance fields. CVPR, 2022. 1, 7

[33] Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter for nonlinear estimation. In Proceedings of the IEEE Adaptive

Systems for Signal Processing, Communications, and Control Symposium, 2000. 3
[34] Yilin Wang, Junjie Ke, Hossein Talebi, Joong Gon Yim, Neil Birkbeck, Balu Adsumilli, Peyman Milanfar, and Feng Yang. Rich

features for perceptual quality assessment of ugc videos. In CVPR, 2021. 8, 13
[35] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer: Simple and efficient design for

semantic segmentation with transformers. In NeurIPS, 2021. 1
[36] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual denotations: New similarity metrics

for semantic inference over event descriptions. Transactions of the Association for Computational Linguistics, 2014. 12
[37] Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sattler, and Andreas Geiger. Monosdf: Exploring monocular geometric cues for

neural implicit surface reconstruction. in arXiv, 2022. 2
[38] Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu, Eli Shechtman, and Noah Snavely. Arf: Artistic radiance fields. ECCV,

2022. 7, 12
[39] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew Davison. In-place scene labelling and understanding with implicit

scene representation. In ICCV, 2021. 1


