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Figure 7: Additional pose transfer examples on DeepFashion. MUST, E2E, and ours are trained with unpaired
images. Other methods are supervised by paired data. 1



Figure 8: Additional pose transfer examples on DeepFashion. MUST, E2E, and ours are trained with unpaired
images. Other methods are supervised by paired data.



Figure 9: Additional pose transfer examples on DeepFashion. MUST, E2E, and ours are trained with unpaired
images. Other methods are supervised by paired data.



Figure 10: Failure cases in DeepFashion. Many failures are due to incorrect predictions of the source UV map and
source parsing map.

SSIM IoU

Head Clothes Arms Legs Head Clothes Arms Legs

(a) w/o. Input Permuting (part-wise) 0.299 0.349 0.377 0.407 0.682 0.772 0.642 0.509
Input Warping, w/o. Input Permuting 0.298 0.351 0.376 0.408 0.697 0.782 0.641 0.525
w/o. Pose Masking 0.298 0.343 0.343 0.382 0.674 0.765 0.625 0.502
w/o. Texture Masking 0.351 0.369 0.421 0.414 0.697 0.777 0.667 0.507
w/o. Parsing 0.353 0.371 0.423 0.441 0.703 0.787 0.673 0.552

(b) w/o.small kernel 0.305 0.368 0.394 0.395 0.674 0.778 0.649 0.505
w/o. large kernel 0.335 0.365 0.396 0.407 0.689 0.783 0.653 0.522
Patch Concat 0.331 0.365 0.398 0.407 0.686 0.778 0.653 0.525
w. blur 0.239 0.354 0.310 0.343 0.625 0.784 0.601 0.454

(c) w/o. Source Pose Branch 0.348 0.371 0.433 0.361 0.706 0.780 0.647 0.428
Pose Concat 0.321 0.364 0.425 0.371 0.709 0.784 0.648 0.433

(d) E2E [9] 0.362 0.307 0.337 0.350 0.709 0.761 0.635 0.501
MUST [6] 0.371 0.312 0.404 0.297 0.707 0.737 0.559 0.424

Ours 0.371 0.377 0.452 0.428 0.717 0.791 0.688 0.531

Table 6: Part-wise scores in DeepFashion. (a), (b) and (c) are our ablations. (d) includes self-driven methods
trained without paired data.

A. Discussions

Failure case analysis. Figures 7-9 provide several
successful examples generated by the proposed method
on DeepFashion. We also obtain the part segments
of the images in the test set using the human parser
in [12], and then compute their part-wise scores. Ta-
ble 6(d) shows that our model achieves better texture
transfer and shape reconstruction than prior work [9, 6]
in terms of part-wise SSIM and IoU. However, one limi-
tation of our model is that it relies on the segmentation
map and DensePose prediction of the source image to
obtain semantic and position information for the per-

muted textures. We found the accuracy of the offline
human parser and DensePose model greatly affects the
transfer results. Figure 10 shows several failed exam-
ples due to this type of inaccuracy. In the first row,
the coat wrapped around the dress was misclassified as
part of the dress in the parsing map, for which our gen-
erated back view incorrectly mixes up their textures.
Similarly, the skirt in the second row was classified as
shorts in the parsing map. As a result, our generator
infers the occluded clothing piece as shorts in the front
view. In the last row, the color of the skirt is half-
black and half-white because the skirt piece was not



(a) Examples of ablations on the input permutation function.

(b) Examples of ablations on the source pose branch.

(c) Examples of ablations on the dual kernel encoder.

Figure 11: Generated images of ablations of our model. Each component of our model improves the transfer of
shape information and detailed clothing patterns, resulting in our full model obtaining the best results.

identified in the parsing map.

Analysis on the ablations. We present the part-
wise scores in Table 6 and some visualized examples in
Figure 11 to show the functionality of each component
of our model. IoU in Table 6 means the Intersection
over Union score between the segmentation maps of the

generated image and that of the target image. This
metric evaluates the shape consistency of each body
part after pose transfer.

From Table 6(a), we find that w/o. Input Permut-
ing and Input Warping have larger drops on arms and
heads compared to other body parts, which indicates



Figure 12: Visualized feature map of the encoded texture features. The feature map is overlaid with the source
image. The source image is downsampled to the resolution of the feature map. Each triplet includes a downsampled
source image, the feature map from the large-kernel encoder, and the feature map from the small-kernel encoder.
Red indicates a higher value and blue means a smaller value.

their incapability of transferring human posture/shape.
For example, in Figure 11a, both w/o. Input Permut-
ing and Input Warping result in a distorted face and
obvious edge blurring at the elbow after pose transfer.
The ablation model w/o. Pose Masking overfits to an
identity mapping function between the source and tar-
get pose, leading to the lowest IoU on all body parts
in Table 6(a). The ablation model w/o. Texture Mask-
ing is much better than w/o. Pose Masking since not
masking the texture can still get a correct pose trans-
formation function from the source pose branch. w/o.
Parsing has lower scores on most body parts compared
to the full model, suggesting that including a parsing
map in the input is overall beneficial to the pose trans-
fer task.

In Table 6(b), w/o. small kernel has worse perfor-
mance than w/o. large kernel and Patch Concat, indi-
cating the importance of the small kernel encoder in re-
ducing noise caused by input permutation. w/o. large
kernel and Patch Concat show similar part-wise scores
since their receptive fields are respectively limited by
the small kernel size and patch size. As shown in Fig-
ure 11c, without the small-kernel encoder, the ablation
model correctly transfers color, but blurs the edges of
the strap. In w/o. large kernel and Patch Concat,
the model has a limited receptive field and thus fails
to recover the exact shape of the strap. To see if the
large-kernel encoder is learning certain low-level infor-
mation (e.g . color and shape) from permuted patches,
we also tried replacing the inputs of the large-kernel
encoder with heavily Gaussian blurred image without
permutation (denoted by w. blur). From both Table
6(c) and the example in Figure 11c, we can see that
images generated by w. blur are much worse compared
to those of the full model. This suggests that features
learned by the large-kernel encoder from the permuted
image might include high-frequency information that
is lost in the Gaussian blurred texture.

In Table 6(c), concatenating the source pose repre-
sentation with the texture slightly improves IoU, but
does not improve SSIM. This means merging the source
pose and texture in one branch can provide some shape
information, but does not have the ability to match the
precise relative position between the source and tar-
get pose. For example, in Figure 11b, although Pose
Concat reconstructs the short sleeve after pose trans-
fer, it has artifacts around the edges of the arm. This
is why our full model uses separate source pose and
texture branches. By separating the source pose and
texture, the source pose branch can directly learn the
texture-agnostic geometry transformation between the
two poses, and thus better recovers the shape.

To further explore the differences in texture fea-
tures learned by the large-kernel encoder and the small-
kernel encoder, we sum up the encoded feature maps
across all channels in the texture branch, and normal-
ize their values to be in the range [0, 1]. Next, we
downsample the image to the resolution of the feature
map and overlay the normalized feature map with the
downsampled source image. In Figure 12, each triplet
includes the downsampled source image, the feature
map from the large-kernel encoder, and the feature
map from the small-kernel encoder. The feature map
given by the large-kernel encoder (middle image in each
triplet) appears to be much smoother than that of the
small-kernel encoder (right image in each triplet). This
suggests that the large-kernel encoder might be learn-
ing coarse information from the clothing piece (e.g .,
color and shape), while the small-kernel encoder is
learning more fine-grained patterns (e.g ., stripe and
pleat).

B. Training Details.

We use AdamW optimizer [4] for training with β1 =
0.5, β2 = 0.999. The initial learning rate is set to 10−3



Method FID↓ SSIM↑ M-SSIM↑ LPIPS↓ M-LPIPS↓ IS↑
Supervised by paired images
GFLA [8] 20.194 0.286 0.815 0.274 0.138 2.546
SPIG [5] 22.043 0.317 0.819 0.271 0.129 2.761
DPTN [11] 17.929 0.289 0.820 0.266 0.125 2.479
NTED(DF) [7] 38.831 0.191 0.734 0.353 0.212 2.242

No paired images
PT2(Ours) 17.389 0.280 0.820 0.314 0.122 2.789

Table 7: Pose transfer results for 128× 64 resolution images on Market-1501.

Figure 13: An example of the refined DensePose in
Market-1501.

and decays to 2× 10−4 after five starting epochs. The
trade-off parameters are set to λ1 = 2.0, λ2 = 5.0, λ3 =
0.5, λ4 = 150 in all experiments. The patch size is 16 ×
16 for DeepFashion and 8 × 8 for Market-1501. To sta-
bilize the training, we use the EMA strategy [10] to av-
erage the learned weights of the generator. We train on
256 × 176 images in DeepFashon and 128 × 64 images
on Market-1501. Our pose representation is predicted
by DensePose [2] and the parsing maps are obtained
from CorrPM [12]. We found that the predicted dense
pose in Market-1501 has poor quality as the image res-
olution is too low (128× 64) for the DensePose model.
Therefore, we use an offline super-resolution model [3]
to upsample the Market-1501 images to 512× 256, get
dense pose from these images, and then downsample
the pose to the original image resolution for our pose
transfer task. An example of the refined DensePose
representation is shown in Figure 13. We also add hu-
man keypoints predicted from OpenPose [1] as part of
the pose representation to improve the accuracy of pre-
dicted posture on Market-1501.

C. Analysis on Market-1501

As shown in Table 7, although our model outper-
forms fully-supervised approaches on M-SSIM and M-
LPIPS, we note that we do perform worse according to
SSIM and LPIPS, which is computed over the entire

image rather than just the target person region.
To investigate the reason behind the discrepancy

when we use masked regions for evaluation, we com-
puted part-wise SSIM scores. The scores for back-
ground, arms, legs, clothes, and head for PT2 are:
0.237, 0.263, 0.283, 0.323, 0.337, respectively. The low-
est SSIM is on the background because the dataset
is collected from surveillance videos, where the back-
ground can change drastically in different time frames.
This violates our assumption that the background
does not change, explaining the relatively poor per-
formance. That said, since our goal is pose trans-
fer, the improved performance using M-SSIM and
M-LPIPS demonstrates we are more successful than
even the supervised methods on Market-1501 at that
task.
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