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Appendix
This supplementary document is organized as follows:

• The datasets and implementation details mentioned in

Sec. 4.1 are shown in Sec. A.

• The hierarchical clustering process and results men-

tioned in Sec. 3.2.1 are shown in Sec. B.

• A more detailed discussion of prior knowledge men-

tioned in Sec. 4.2 is shown in Sec. C.

• More experimental comparisons and analyses are

shown in Sec. D

• The limitations of the proposed method are shown in

Sec. E

• The potential negative societal impacts of the proposed

method are shown in Sec. F

A. Datasets and Implementation Details
VG Dataset. We followed the widely-used strategy [12] to

split dataset (i.e., 75K/32K images for train/test, 150 object

categories and 50 predicate categories). Besides, 5K images

within the training set are sampled as val set following [10].

All predicate categories are divided into three groups {head,

body, tail} based on the number of samples as [9].

GQA Dataset. We followed the prior work [3] to split

dataset (i.e., 70%/30% of the images for train/test, 200 ob-

ject categories and 100 predicate categories). Similarly, 5K

images within the training set are sampled as val set. We

utilized the same group category ratio as VG to divide all

predicate categories into {head, body, tail} groups.

Implementation Details. Following the training protocol

in prior SGG works [10], we adopted the object detector

Faster R-CNN with the ResNeXt-101-FPN [8] backbone

trained by [10] to detect all the bounding boxes and extract

their visual features. The parameters of the backbone were

kept frozen during the training. This detector could achieve

28.14 mAP on the VG test set (i.e., using 0.5 IoU thresh-

old for evaluation). To avoid messy hyperparamter tun-
ing, most of the hyperparamters follow preivous works.

Algorithm 1: Hierarchical Clustering

Input: Entity category set C = { ci | i = 1,2,· · · , N},

similarity measure function Sim, and cluster

number K.

Output: Clusters S = {si|i = 1, 2, · · · ,K}.

/* Initialize each entity category
as a cluster */

for i = 1, 2, · · · , N do
si = {ci}

/* Initialize the size of each
cluster li and the similarity
matrix Asim */

for i = 1, 2, · · · , N do
li = 1
for j = 1, 2, · · · , N do

Asim(i, j) = Sim(si, sj)
Asim(j, i) = Asim(i, j)

/* Merge the two most similar
cluster until the number of
clusters is smaller than K */

while LEN(S) > K do
si, sj = SELECT MAX(Asim(i, j)/(li + lj))
si = MERGE(si, sj)
S = S − sj
li = li + lj + 1
UPDATE(Asim)

More specifically, the hyperparameters λ and γ were set to

0.07 and 0.7 in CFA (c.f . Sec. 3.2). The weights of pattern,

context and semantic similarity were 1.0, 1.0 and 0.01 in

intrinsic-CFA (c.f . Sec. 3.2.1). The threshold σ was set to

0.5 in spatial restriction (c.f . Sec. 3.2.1). The β was set to

0.1 to regulate the loss during training (c.f . Sec. 3.3). In

this paper, SGD optimizer was used to train the model. The

batch size was set to 12 and the initial learning rate was

set to 0.01. After the performance on the val set reached the

plateau period, the learning rate would be decayed by 10 for

two times. All experiments were carried out with PyTorch

and NVIDIA 2080Ti GPU.



Figure 7: The results of hierarchical clustering on VG [4].

B. Hierarchical Clustering in Extrinsic-CFA

As mentioned in Sec. 3.2.1, we use hierarchical cluster-

ing to mine the correlations between entity categories, and

the specific implementation is displayed in Algorithm 1.

Treating clusters as a collection of multiple entity cate-

gories, the pattern and context similarity can be transferred

directly from class-level to cluster-level. For semantic sim-

ilarity, we take the mean similarities for the categories be-

tween clusters.

After initializing the variables, we perform clustering by

the following steps in each iteration. First, we select the two

most similar clusters (SELECT MAX) based on similarity

matrix Asim and size of cluster l. Since the number of dif-

ferent relation triplet in the whole dataset is extremely im-

balanced, we follow [11] to introduce a penalty term l (i.e.,

the size of the cluster) to avoid dominating clustering by en-

tity categories with a large proportion of samples. Then, we

merge the entity categories in cluster sj into si (MERGE),

remove cluster sj , and update the size of cluster li. Since si
has changed, we recalculate the similarity of other clusters

to it and then update Asim (UPDATE). The above steps are

Prior PredCls

Triplet Subject Object mR@50 / 100 R@50 / 100 Mean

35.7 / 38.2 54.1 / 56.6 46.2
� 39.1 / 42.0 44.9 / 47.8 43.5

� 39.5 / 42.3 45.7 / 48.4 44.0

� 38.5 / 41.1 46.6 / 49.2 43.9

� � 38.4 / 41.8 40.8 / 44.0 41.3

� � 38.2 / 41.9 40.7 / 44.2 41.3

� � 39.9 / 43.0 42.3 / 45.1 42.6

� � � 37.8 / 42.0 37.6 / 41.6 39.8

Table 6: Performance (%) of different prior knowledge

combinations on VG [4]. All Experiments are based on Mo-

tifs+CFA.

repeated until the number of clusters is equal to K.

The clustering result is shown in Figure 7. Obviously,

some entity categories that share common characters are

grouped into the same cluster, e.g., light and lamp,

mountain and hill, and so on. Notably, our clustering
method focuses on selecting reasonable entity category
for query triplet in the same cluster, and does not em-



SGG Models

PredCls SGCls SGGen
mR@K R@K

Mean
mR@K R@K

Mean
mR@K R@K

Mean50 100 50 100 50 100 50 100 50 100 50 100

Motifs+TDE [10]CVPR’20 24.2 27.9 45.0 50.6 36.9 13.1 14.9 27.1 29.5 21.2 9.2 11.1 17.3 20.8 14.6

Motifs+CogTree [13]IJCAI’21 26.4 29.0 35.6 36.8 32.0 14.9 16.1 21.6 22.2 18.7 10.4 11.8 20.0 22.1 16.1

Motifs+RTPB[1]AAAI’22 35.3 37.7 40.4 42.5 39.0 20.0 21.0 26.0 26.9 23.5 13.1 15.5 19.0 22.5 17.5

Motifs+PPDL[6]CVPR’22 32.2 33.3 47.2 47.6 40.1 17.5 18.2 28.4 29.3 23.4 11.4 13.5 21.2 23.9 17.5

Motifs+GCL[3]CVPR’22 36.1 38.2 42.7 44.4 40.4 20.8 21.8 26.1 27.1 24.0 16.8 19.3 18.4 22.0 19.1

Motif+HML[2]ECCV’22 36.3 38.7 47.1 49.1 42.8 20.8 22.1 26.1 27.4 24.1 14.6 17.3 17.6 21.1 17.7

Motifs+CFA‡ (ours) 39.9 43.0 42.3 45.1 42.6 20.9 22.4 25.7 27.4 24.1 15.3 18.1 20.7 24.4 19.6

VCTree+TDE [10]CVPR’20 26.2 29.6 44.8 49.2 37.5 15.2 17.5 28.8 32.0 23.4 9.5 11.4 17.3 20.9 14.8

VCTree+CogTree [13]IJCAI’21 27.6 29.7 44.0 45.4 36.7 18.8 19.9 30.9 31.7 25.3 10.4 12.1 18.2 20.4 15.3

VCTree+RTPB [1]AAAI’22 33.4 35.6 41.2 43.4 38.4 24.5 25.8 28.7 30.0 27.3 12.8 15.1 18.1 21.3 16.8

VCTree+PPDL [6]CVPR’22 33.3 33.8 47.6 48.0 40.7 21.8 22.4 32.1 33.0 27.3 11.3 13.3 20.1 22.9 16.9

VCTree+GCL [3]CVPR’22 37.1 39.1 40.7 42.7 39.9 22.5 23.5 27.7 28.7 25.6 15.2 17.5 17.4 20.7 17.7

VCTree+HML [2]ECCV’22 36.9 39.2 47.0 48.8 43.0 25.0 26.8 27.0 28.4 26.8 13.7 16.3 17.6 21.0 17.2

VCTree+CFA‡ (ours) 39.2 42.5 41.9 45.0 42.2 26.3 28.3 32.3 33.8 30.2 15.1 17.9 20.5 24.2 19.4

Transformer+CogTree [13]IJCAI’21 28.4 31.0 38.4 39.7 34.4 15.7 16.7 22.9 23.4 19.7 11.1 12.7 19.5 21.7 16.3

Transformer+HML [2]ECCV’22 33.3 35.9 45.6 47.8 40.7 19.1 20.4 22.5 23.8 21.5 15.0 17.7 15.4 18.6 16.7

Transformer+CFA‡ (ours) 38.6 41.5 46.2 48.9 43.8 20.9 22.7 28.1 29.6 25.3 15.0 17.9 21.0 24.7 19.7

Table 7: Performance (%) of state-of-the-art tail-focused SGG models on VG [4]. “Mean” is the average of mR@50/100 and

R@50/100. ‡ means using the component prior knowledge.

phasize that entity categories located in other clusters
must be unreasonable for the query triplet (e.g., man is

in the same cluster as woman of the query triplet woman-

walking in-street, so woman may be replaced to

man. men in another cluster may also be reasonable for

woman, but we cannot choose to replace the woman with

it). In addition, since our method is based on statistic of

dataset, clustering results may vary from dataset to dataset.

Even if the cluster results are not reasonable for all rela-

tions, the generated “noisy” clusters are good enough to

meet the requirements (i.e., our methods have consistent

performance gains on both VG and GQA datasets). We de-

sign this clustering for simplicity, and we will leave more

comprehensive versions for future works.

C. Component Prior Knowledge

As discussed in prior SGG works [7], the statistic prior

of the predicate distribution under a given condition can

improve the mR@K performance of the unbiased SGG. In

the inference phase, we calculate statistic component prior

bs,o,r, and add it to the predicted logits to predict predicate

category:

bs,o,r = − log
counts,o,r

∑H
i=1 counts,o,i

, (1)

where H is the number of predicate categories. As for the

prior “Triplet”, “Subject”, and “Object”, counts,o,r is the

amount of the triplets whose predicate category is r in the

training set given subject-object pair, subject, and object re-

spectively. The result is shown in Table 6, they are all based

on the Motifs+CFA under the PredCls setting. The super-

Strategy
PredCls

mR@50 / 100 R@50 / 100 Mean

Motifs [14] 16.5 / 17.8 65.6 / 67.2 41.8

+Reweight [10] 30.8 ↑14.3 / 34.5 ↑16.7 36.1 / 40.4 35.5

+Resample [10] 18.5 ↑2.0 / 20.0 ↑2.2 64.6 / 66.7 42.5

+CFA 35.7 ↑18.6 / 38.2 ↑20.4 54.1 / 56.6 46.2

Table 8: Performance (%) of re-balancing strategies and

CFA on VG [4].

position of predicate statistic prior “Subject”, and “Object”

achieves the best performance on mR@K. We speculate that

statistic component prior can improve the performance of

predicates with limited component diversity [7] (i.e., tail

predicates) at the statistic level, and CFA at the feature level,

they complement each other.

D. Extra Comparisons and Analyses
D.1. Comparison with SOTA Tail-focused Methods

Due to the common label noises in dataset (e.g., head

predicate on and tail predicate laying on are all rea-

sonable for man-bed, but the only groundtruth label in

the test set is on) [5], the improvement of mR@K will in-

evitably lose the performance of R@K. Therefore, we com-

pared with these tail-focused approaches aiming at improv-

ing mR@K separately in this section.

To compare more fully with the SOTA tail-focused ap-

proach, we listed all of the metrics (i.e., mR@K, R@K and

Mean) in Table 7. As can be seen from the results: 1) Af-

ter adding component prior knowledge, our CFA‡ has been

greatly improved at mR@K metric, i.e., further improve



Figure 8: Performance(%) comparison between Motifs [14] and Motifs+CFA over all predicates on test set of VG [4]. The

orange area denotes the predicate distribution of training set.
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Figure 9: The results of scene graphs generated by Motifs (blue) and Motifs-CFA (green) on VG [4]. Green predicates are

correct (i.e., match GT), brown predicates are acceptable (i.e., does not match GT but still reasonable), and purple predicates

are more informative (i.e., does not match GT and more reasonable).

the performance of the tail. This is consistent with our in-

tent to use component prior knowledge to improve the per-

formance of predicates with less component diversity (i.e.,

tail predicates). 2) All the tail-focused methods sacrifice a

lot on R@K. Our CFA‡ can maintain a high R@K, when

mR@K is significantly increased, i.e., a higher Mean. It

proves that our method has a small performance loss for

the head predicates while improving the tail performance as

much as possible.

D.2. Comparison with Re-balancing Methods.

To demonstrate the superiority of CFA compared with

the prevalent re-balancing methods (i.e., reweight and re-

sample) [10], we conducted the three strategies on the base-

line Motifs [14]. The results under the PredCls setting are

reported in Table 8. From the results, we can observe: 1)

The Motifs baseline can achieve the best R@K. However,

the high R@K is mainly due to the frequency bias of the

dataset [10], and they suffer severe drops in tail predicates.

2) The reweight method achieves better performance at

mR@K, but it also sacrifices the performance of head pred-

icates excessively, resulting in a low Mean. 3) The resample

method keeps R@K high, but the improvement of mR@K

is slight. The reason is that those decision boundaries may

be still biased toward the head. 4) CFA achieves the highest

mR@K and maintains high R@K, i.e., it achieves the best

trade-off over different predicate categories (highest perfor-

mance on Mean).

D.3. Comparison over All Predicates

To further demonstrate the performance of each predi-

cate, we displayed the predicate distribution of the training

set in the VG dataset [4] and the performance of Motifs [14]

and Motifs+CFA on R@100 for each predicate category

in Figure 8. Obviously, our approach slightly compro-

mises the performance of the head predicates (e.g., has),

but greatly improves the tail predicates (e.g.,laying on).

This proves the superiority of our method in considering the



Figure 10: Predicate distribution during training on VG [4].

performance of all predicates.

D.4. Qualitative Analysis.

Figure 9 shows some qualitative results generated by

Motifs [14] and Motifs+CFA under PredCls setting. We

can observe that CFA can not only predict more accurate

predicates (e.g., under vs. holding), but also more fine-

grained and informative predicates (e.g., on vs. painted
on, and on vs. mounted on).

D.5. Quantitive Results.

To further investigate how CFA works, we visualized the

change in the number of training samples for each predicate

after applying CFA. As shown in Figure 10, CFA generated

considerable training samples for tail predicates, which can

effectively increase the diversity of features.

E. Limitations

Although our CFA can enrich the feature diversity, we

cannot guarantee that the triplets before and after intrinsic-

CFA are absolutely reasonable. In addition, the category of

the triplets enhanced by our model is limited by the only

triplet categories in the training set, and the triplet enhance-

ment for open-set needs to be explored.

F. Potential Negative Societal Impacts

The enhanced triplets may change the intention in the

original triplet, such as person -laying on-snow in-

stead of person-laying on-beach. In addition, if the

feature augmentation method is abused, it may cause data

redundancy and waste computing resources.
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