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1. Introduction
Here we provide more implementation details of the

training and evaluation; additional evaluation results on in-
the-wild datasets; additional ablation studies with visualiza-
tions; and additional visualization results on internet videos.
Further, we perform a comparisons to state-of-the-art meth-
ods on extreme scenarios to complement our comprehen-
sive analysis. Finally, a video demo is provided in our sup-
plementary material to show additional qualitative video re-
sults.
2. Implementation Details

Similar to [12], we resize the image sequences to a size
of 512×512. The size of the backbone features is Hf =
Wf = 128, and the maximum number of detections N is
set to 64. The time window size T is set to 8. The spatial
loss weights are set to wcm = 160, wmpj = 360, wpmpj =
400, wpj2d = 420, wpose = 80, wshape = 1, wprior = 1.6, and
are fixed in all training steps. The temporal loss weights are
set to waccel = 200, waj3d = 300, wsm = 100, and are only
used when fine-tuning on the video datasets. The threshold
tc of the Body Center Heatmap is set to 0.2. The learning
rate lr of the Adam optimizer is set to 5× 10−5 and the
batch size B is 16. Training is performed in an end-to-end
manner directly from image or video inputs.

2.1. Training Datasets

Since CoordFormer is a novel approach for multi-person
videos, our training and evaluation focuses on the most rel-
evant dataset (3DPW [14]), while other datasets are used
as supplements to improve generalization and enhance pre-
diction accuracy. For completeness, we have included the
dataset details below.
3DPW [14] is a challenging outdoor dataset with more than
51,000 frames of 7 actors in various clothing styles. The
dataset includes numerous frames with multi-person inter-
actions and all the raw ground-truth markers are recorded
via Inertial Measurement Units, which provide accurate
ground truth annotations.
Human3.6M [2] is an indoor, multi-view, single-person 3D
human pose estimation dataset. The extended SMPL model

annotations are generated from sparse marker data. Follow-
ing [12], we use 5 subjects (S1,S5,S6,S7,S8) for training.
MPI-INF-3DHP [10] is an indoor, multi-view, single-
person 3D human pose dataset with some noise.
MuCo-3DHP [10] is an extended version of
MPI-INF-3DHP using data augmentation. The au-
thors replace the background with real-world images and
place 1 to 4 subjects on the background to facilitate a range
of inter-person overlap and activity scenarios.
In-the-wild 2D datasets MPII [1] and LSP [3, 4] are in-
the-wild 2D datasets, which are collected using Amazon
Mechanical Turk. Annotation quality of the 2D labels is
improved by modelling the annotator error using iterative
procedures.

2.2. Training Steps

Existing video-based methods use an explicit 2D detec-
tor and a tracker to model the temporal relationship of a
particular individual. Instead, CoordFormer employs Body
Center Attention as an implicit detector and the Spatial-
Temporal Transformer to learn temporal relations. This al-
lows CoordFormer to not only leverage video data, which
often can be restricted in the multi-person setting, but also
leverage available image datasets. This can be facilitated
by training CoordFormer in three steps: First the spatial
branch of CoordFormer will be trained like most existing
single image-based methods [12, 8], while the second step
consists of fine-tuning the spatial and temporal branch on
the video dataset without 3DPW. Finally, CoordFormer is
fine-tuned with the 3DPW dataset in the third step.

2.3. Training Dataset Ratio

To obtain the best results, we follow EFT [6] and
SPIN [9] to batch data according to the dataset sam-
ple ratios. To train the spatial branch of Coord-
Former without using temporal information, we incorpo-
rate 30% MPI-INF-3DHP, 10% LSP, 15% MPII, 20%
MuCo-3DHP and 25% Human3.6 M into training in the
first step. Next, we fine-tune the model on the Human3.6
M dataset in the second step. Finally, the model is fine-tuned
on 3DPW to achieve the final best performing model.
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2.4. Evaluation Strategy

For a fair comparison, we use CoordFormer after the sec-
ond training-step for evaluation following Protocol 1 and 2,
and use the fine-tuned model after the third training-step to
evaluate the best results (Protocol 3).

Table 1: Comparsions resuls on CMU Panoptic[5] and
MuPoTs[11] according to PAMPJPE metric.

Methods
CMU Panoptic

MuPoTs
Haggling Mafia Ultim Pizza Mean

ROMP 68.16 79.25 76.89 85.25 77.39 93.00

CoordFormer 66.82 77.23 77.83 83.03 76.23 88.02

3. Further evaluation results on in-the-wild
datasets.

According to the PAMPJPE metric, the comparison re-
sults on CMU Panoptic[5] and MuPoTs[11] are reported for
comprehensive evaluations under in-the-wild multi-person
scenarios. All the methods are directly evaluated without
any fine-tuning. As shown in Tab. 1, CoordFormer outper-
forms ROMP in almost all activities. Moreover, as shown
in Fig. 1, CoordFormer performs better detection and pose
estimation.

4. Further Ablation Study With Visualization
To further show the effectiveness of BCA and CAA, we

collect the evaluation results on the 3DPW validation set dur-
ing the training and compare the performance of the abla-
tion models. All the models are trained for 10 epochs, fol-
lowing the same setting as the first training step in Sec. 2.2.
For the sake of readability, the notations of different model
settings are summarized in Tab. 2.

How BCA accelerates the training process. As shown
in Fig. 2b and Fig. 2c, models with BCA mechanism
achieve better performance and more stable convergence
under different model settings. More specially, CFbca

outperforms CFNone by 8.2% and 6.8% according to the
MPJPE and PAMPJPE metrics, while S-CFNone could not
converge for the same training datasets.

Table 2: The notations of CoordFormer under different set-
tings. Note, here ”splitting” refers to adopting the tokeniza-
tion method that splits the features into patches and extract
tokens from them and CAA is not used to highlight the ef-
fectiveness of BCA.

w/o BCA w/ BCA

splitting S-CFNone S-CFbca

not splitting CFNone CFbca

Table 3: Ablation study of CAA under different training
steps.

Steps Methods MPJPE↓ PAMPJPE↓ PVE↓

Step 1
CFbca 101.73 55.68 117.91

CoordFormer 103.95 58.03 120.67

Step 2
CFbca 97.14 56.01 112.69

CoordFormer 95.27 54.58 110.35

Step 3
CFbca 83.19 50.62 99.21

CoordFormer 79.41 46.58 94.44

How CAA preserves pixel-level representations. Patch-
level tokenization of standard vision transformers leads to
feature disorder and feature partition, which occurs when
one patch contains multiple person and when the body cen-
ter is located on the boundary line of the patch, respectively.
The design of CAA allow us to keep pixel-level represen-
tations and avoid the spatial information degradation. As
shown in Fig. 2d, S-CFNone results in extensive fluctua-
tions in performance and crashes halfway through training
due to sudden excessive losses. Moreover, we observe that
CFNone converges quicker than S-CFbca.

However, it is not enough to build spatial-temporal con-
straints only based on pixel-level tokenization. Tab. 3 il-
lustrates CAA’s effectiveness to capture coordinate infor-
mation across frames. Although CFbca performs better for
single-image regression, CoordFormer demonstrates supe-
rior modeling of spatial-temporal relations.

Qualitative ablation study of visualization comparison.
Fig. 3 illustrates that 1) BCA and CAA have to be com-
bined to facilitate accurate Body Center heatmap prediction
using the CoordFormer, 2) BCA can enhance the confidence
on the body center, especially under person-occlusion sce-
narios, 3) CoordFormer w/o CAA regresses the mesh only
based on BCA, which improves results on certain individ-
uals, but fails to model temporal relations, thus degrading
pose and shape coherence.

Whether BCA and CAA conform to our assumptions.
As shown in Tab. 4, CoordFormer with CAA improves per-
formance by learning temporal information in training step
2 according to both MPJPE and PAMPJPE, while Coord-
Former with only BCA obtains worse PAMPJPE. This il-
lustrates that BCA focuses on single-image and CAA fo-
cuses on temporal information, which is consistent with our
implicit detection and tracking assumptions. Moreover, as
shown in Fig. 1, CoordFormer performs better detection and
pose estimation.
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Figure 1: Partial visualization comparison between CoordFormer and ROMP on CMU Panoptic[5] dataset.

Table 4: Ablation study under 3DPW.
Methods MPJPE ↓ PAMPJPE ↓ PVE ↓

BCA CAA step1 step2 step3 step1 step2 step3 step1 step2 step3

✓ 101.73 97.14 83.19 55.68 56.01 50.62 117.91 112.69 99.20

✓ 103.61 99.94 82.20 57.64 55.63 48.84 120.04 114.82 98.23

✓ ✓ 103.95 95.27 79.41 58.03 54.58 46.58 120.67 110.35 94.44

5. Further visualization results on the internet
videos.

We further test CoordFormer on internet videos, espe-
cially sports videos. As shown in Fig. 4, CoordFormer ef-
fectively obtains the multi-person mesh from a variety of
videos.

6. Further Visualization Compared to State-of-
the-art Methods.

To show the superior performance of CoordFormer be-
yond simple in-the-wild scenarios, we compare Coord-
Former to the best pre-trained ROMP [12] and BEV [13]
models. Note, these were trained on a considerably larger
number of datasets and for BEV, leverage a larger Body
Center heatmap with a size of 128, resulting in more ca-
pacity to provide accurate and precise predictions. While
an unfair comparison from CoordFormer’s perspective, we
observe that CoordFormer still obtains preferable results.

Qualitative results on internet videos with small targets.
Given the precise coordinate information to refine the Body
Center heatmap, CoordFormer is able to better detect people
in the video, especially the small targets, which is crucial for
3D human mesh recovery from athletic sports videos and
aerial videos. As shown in Fig. 5, CoordFormer obtains
great detection results and achieves the best visualization
results for small targets. While CoordFormer is not able to
provide mesh results for all people, CoordFormer achieves
significant improvements on the accuracy of the Body Cen-
ter heatmap and Camera map compared to ROMP and BEV.

Qualitative results on internet videos with low resolu-
tion. As shown in Fig. 6, CoordFormer displays superior
robustness to videos with different resolution. Specifically,
CoordFormer can still maintain its performance even for

videos with low resolution of 64×36. Compared with state-
of-the-art video-based [7, 15] methods that are equipped
with 2D detectors, Fig. 7 illustrates that CoordFormer
achieves the best results over methods with requiring ex-
plicit detection.

7. Social Impact

While there are a wide range of application domains
where video-based 3D human mesh recovery will be benefi-
cial, such as for instance in physical therapy and virtual real-
ity, there are also potentially negative application scenarios.
For instance, these approaches could be used in malicious
contexts to obtain a large amount of private body data or
for surveillance purposes. Consequently, CoordFormer is
released as a research tool only.
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(a) Comparisons under different model settings. (b) Ablation study of BCA on CFNone and CFbca

(c) Ablation study of BCA on S-CFNone and S-CFbca (d) Comparison of different methods for obtaining tokens.

Figure 2: Further ablation study of BCA and CAA at the first training step.

Figure 3: Further ablation study of visualization comparison.
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Figure 4: Further visualization results of CoordFormer on the internet videos.
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Figure 5: Qualitative results of ROMP [12], BEV [13] and CoordFormer on the internet videos with small targets.

7



Figure 6: Qualitative results of ROMP [12], BEV [13] and CoordFormer on the internet videos with low resolution.
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Figure 7: Qualitative results of ROMP [12], BEV [13], VIBE [7], MPS-Net [15] and CoordFormer on the internet videos
with low resolution.
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