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1. The Number of LDP Modules
We have studied the influence of the number of LDP modules in Table 1. It is observed that inserting the LDP modules in

positions 1-5 results in the highest performance.

Numbers 1 2 3 4 5

PACS 85.1 84.7 85.4 85.6 86.6
Table 1. Effects of different numbers of LDP modules based on Training-domain model selection.

2. Evaluation Protocol Details
In this study, we follow the evaluation protocol given by DomainBed[8]. For the Colored MNIST and Rotated MNIST

datasets, we train the model for 5000 steps and evaluate the model every 100 steps. For the PACS, VLCS, OfficeHome,
and TerraIncognita datasets, we train the model for 5000 steps and evaluate the model every 300 steps. For the DomainNet
dataset, we train the model for 5000 steps and evaluate the model every 1000 steps. The batch size and the learning rate are
set to 32 for each domain and 5e-5 respectively. The dropout probability and the weight decay are set to zero.

The same procedure was applied for all methods: a random hyperparameter search of 20 trials over a joint distribution,
described in Table 2. DomainBed conduct a hyperparameter search for each domain, which means we need to train 20 * n
(number of domains) models to select the hyperparameters. However, in practice, it is non-trivial to apply a different model
to a different domain. Hence, to reduce the search space for computational efficiency, we use the same hyperparameter for
each domain in every dataset. Although the total runs are reduced, our method also outperforms the previous state-of-the-art.

For the comparison with SWAD-based methods, we build our code upon the open-source code of SWAD[4] and follow its
training strategy.

Dataset Parameter Default value distribution

PACS/VLCS/ learning rate 5e-5 10Uniform(−5,−3.5)

OfficeHome/ batch size 32 2Uniform(3,5.5)

TerraIncognita/ weight decay 0 10Uniform(−6,−2)

DomainNet dropout probability 0 RandomChoice([0, 0.1, 0.5])

CMNIST/ learning rate 1e-3 10Uniform(−4.5,−3.5)

RMNIST batch size 64 2Uniform(3,9)

weight decay 0 0

CCFP domain specific strength λdis 1 Uniform(0.1,10)
semantic regularization strength λsem 1 Uniform(0.1,10)

Table 2. Hyperparameter search space

3. Architecture Details
We specify the inserted position of the LDP modules in Table 3 for ResNet-50 and in Table 4 for MNIST ConvNet. The

input size of LDP is the dimension of parameters γ ∈ Rsize and β ∈ Rsize in LDP modules.



4. Test-domain (Oracle) model selection
In the main paper, we focus on the ‘Training-domain’ model selection. For the oracle model selection, DomainBed claims

that Oracle selection results can be either optimistic, because we access the test distribution, or pessimistic, because the
query limit reduces the number of considered hyperparameter combinations. However, previous work[22, 17] argues that
OOD performance cannot, by definition, be performed with a validation set from the same distribution as the training data.
To this end, we still report the results based on the Test-domain model selection to prove the usefulness of our approach.

# Layers

1 Conv2D (in=d, out=64)
2 LDP (size=64)
3 BatchNorm
4 Relu
5 Maxpooling
6 LDP (size=64)
7 Layer1(in=d, out=256)
8 LDP (size=256)
9 Layer2(in=d, out=512)

10 LDP (size=512)
11 Layer3(in=d, out=1024)
12 LDP (size=1024)
13 Layer4(in=d, out=2048)
14 Average pooling

Table 3. Details of ResNet-50 and the LDP modules.

# Layers

1 Conv2D (in=d, out=64)
2 Relu
3 GroupNorm (groups=8)
4 LDP (size=64)
5 Conv2D (in=64, out=128, stride=2)
6 Relu
7 GroupNorm (groups=8)
8 LDP (size=64)
9 Conv2D (in=128, out=128)

10 Relu
11 GroupNorm (groups=8)
13 Conv2D (in=128, out=128)
14 Relu
15 GroupNorm (groups=8)
16 Average pooling

Table 4. Details of ConvNet and the LDP modules.

Algorithm CMNIST RMNIST VLCS PACS OfficeHome TerraInc DomainNet Avg

ERM[23] 57.8 ± 0.2 97.8 ± 0.1 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 53.0 ± 0.3 41.3 ± 0.1 68.7
IRM[1] 67.7 ± 1.2 97.5 ± 0.2 76.9 ± 0.6 84.5 ± 1.1 63.0 ± 2.7 50.5 ± 0.7 28.0 ± 5.1 66.9

GroupDRO[18] 61.1 ± 0.9 97.9 ± 0.1 77.4 ± 0.5 87.1 ± 0.1 66.2 ± 0.6 52.4 ± 0.1 33.4 ± 0.3 67.9
Mixup[25] 58.4 ± 0.2 98.0 ± 0.1 78.1 ± 0.3 86.8 ± 0.3 68.0 ± 0.2 54.4 ± 0.3 39.6 ± 0.1 69.0
MLDG[11] 58.2 ± 0.4 97.8 ± 0.1 77.5 ± 0.1 86.8 ± 0.4 66.6 ± 0.3 52.0 ± 0.1 41.6 ± 0.1 68.7
CORAL[21] 58.6 ± 0.5 98.0 ± 0.0 77.7 ± 0.2 87.1 ± 0.5 68.4 ± 0.2 52.8 ± 0.2 41.8 ± 0.1 69.2
MMD[12] 63.3 ± 1.3 98.0 ± 0.1 77.9 ± 0.1 87.2 ± 0.1 66.2 ± 0.3 52.0 ± 0.4 23.5 ± 9.4 66.9
DANN[7] 57.0 ± 1.0 97.9 ± 0.1 79.7 ± 0.5 85.2 ± 0.2 65.3 ± 0.8 50.6 ± 0.4 38.3 ± 0.1 67.7

CDANN[12] 59.5 ± 2.0 97.9 ± 0.0 79.9 ± 0.2 85.8 ± 0.8 65.3 ± 0.5 50.8 ± 0.6 38.5 ± 0.2 68.2
MTL[3] 57.6 ± 0.3 97.9 ± 0.1 77.7 ± 0.5 86.7 ± 0.2 66.5 ± 0.4 52.2 ± 0.4 40.8 ± 0.1 68.5

SagNet[13] 58.2 ± 0.3 97.9 ± 0.0 77.6 ± 0.1 86.4 ± 0.4 67.5 ± 0.2 52.5 ± 0.4 40.8 ± 0.2 68.7
ARM[27] 63.2 ± 0.7 98.1 ± 0.1 77.8 ± 0.3 85.8 ± 0.2 64.8 ± 0.4 51.2 ± 0.5 36.0 ± 0.2 68.1
V-REx[10] 67.0 ± 1.3 97.9 ± 0.1 78.1 ± 0.2 87.2 ± 0.6 65.7 ± 0.3 51.4 ± 0.5 30.1 ± 3.7 68.2

RSC[9] 58.5 ± 0.5 97.6 ± 0.1 77.8 ± 0.6 86.2 ± 0.5 66.5 ± 0.6 52.1 ± 0.2 38.9 ± 0.6 68.2

AND-mask[15] 58.6 ± 0.4 97.5 ± 0.0 76.4 ± 0.4 86.4 ± 0.4 66.1 ± 0.2 49.8 ± 0.4 37.6 ± 0.6 67.5
SAND-mask[20] 62.3 ± 1.0 97.4 ± 0.1 76.2 ± 0.5 85.9 ± 0.4 65.9 ± 0.5 50.2 ± 0.1 32.2 ± 0.6 67.2

Fishr[17] 68.8 ± 1.4 97.8 ± 0.1 78.2 ± 0.2 86.9 ± 0.2 68.2 ± 0.2 53.6 ± 0.4 41.8 ± 0.2 70.8

CCFP (ours) 65.0 ± 0.1 97.9 ± 0.1 80.0 ± 0.6 88.4 ± 0.3 69.7 ± 0.3 53.1 ± 0.4 41.8 ± 0.1 70.9
Table 5. DomainBed with oracle model selection. We highlight the best result.

5. More Comparison with previous feature perturbation based methods
We conduct new extensive experiments on three additional datasets as shown in Table 6. It can be seen that our CCFP

outperforms the previous feature perturbation based methods significantly.



Algorithm VLCS OfficeHome TerraInc

Mixstyle 76.2 ± 0.4 64.2 ± 0.1 46.0 ± 1.0
Mixstyle (dual) 78.4 ± 0.2 66.7 ± 0.2 46.8 ± 0.8

DSU 76.8 ± 0.3 63.3 ± 0.2 42.9 ± 0.6
DSU (dual) 77.7 ± 0.3 66.3 ± 0.3 47.5 ± 0.3

pAdaIN 75.2 ± 0.6 64.6 ± 0.1 45.5 ± 0.8
pAdaIN (dual) 77.9 ± 0.2 68.1 ± 0.2 47.5 ± 0.3

CCFP (ours) 78.9 ± 0.3 68.9 ± 0.1 48.6 ± 0.4

Table 6. The experiment setting is as same as Table 8 (page 7).

6. More Experimental results
We also validate our algorithm on DomainNet[16]. Our approach achieves a comparable performance against the previous

state-of-the-art. As shown in Table 9, our approach shows state-of-the-art performances with significant margin of +0.4%
averagely on accuracy.

Algorithm A C P S Avg.

MASF[6] 82.9 80.5 95.0 72.3 82.7
DMG[5] 82.6 78.1 94.5 78.3 83.4

MetaReg[2] 87.2 79.2 97.6 70.3 83.6
ER[28] 87.5 79.3 98.3 76.3 85.3

pAdaIN[14] 85.8 81.1 97.2 77.4 85.4
EISNet[24] 86.6 81.5 97.1 78.1 85.8
DSON[19] 87.0 80.6 96.0 82.9 86.6
SWAD[4] 89.3 83.4 97.3 82.5 88.1
PCL[26] 90.2 83.9 98.1 82.6 88.7

CCFP (ours) 90.3 84.0 97.2 83.7 88.8
Table 7. Comparison with SWAD-based state-of-the-art methods on PACS benchmark. A: art, C: cartoon, P: photo, S: sketch, Avg.:
average.

Algorithm clip info paint quick real sketch Avg.

SWAD[4] 66.0 22.4 53.5 16.1 65.8 55.5 46.5
PCL[26] 67.9 24.3 55.3 15.7 66.6 56.4 47.7

CCFP (ours) 66.4 22.9 54.0 16.2 64.5 56.7 46.8
Table 8. Comparison with SWAD-based state-of-the-art methods on DomainBed benchmark.

Algorithm PACS VLCS OfficeHome TerraInc DomainNet Avg.

SWAD[4] 88.1 ± 0.1 79.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9
PCL[26] 88.7 78.0 71.6 52.1 47.7 67.6

CCFP (ours) 88.8 ± 0.3 79.4 ± 0.1 72.1 ± 0.3 53.0 ± 0.1 46.8 ± 0.2 68.0
Table 9. Comparison with SWAD-based state-of-the-art methods on DomainBed benchmark.

7. Full DomainBed Results
Tables below detail results for each dataset with ’Training-domain’ model selection methods.



Algorithm +90% +80% +10% Avg.

ERM[23] 71.7 ± 0.4 72.9 ± 0.2 10.0 ± 0.1 51.5
IRM[1] 72.5 ± 0.1 73.3 ± 0.5 10.2 ± 0.3 52.0

GroupDRO[18] 73.1 ± 0.3 73.2 ± 0.2 10.0 ± 0.2 52.1
Mixup[25] 72.7 ± 0.4 73.4 ± 0.1 10.1 ± 0.1 52.1
MLDG[11] 71.5 ± 0.2 73.1 ± 0.2 9.8 ± 0.1 51.5
CORAL[21] 71.6 ± 0.3 73.1 ± 0.1 9.9 ± 0.1 51.5
MMD[12] 71.4 ± 0.3 73.1 ± 0.2 9.9 ± 0.3 51.5
DANN[7] 71.4 ± 0.9 73.1 ± 0.1 10.0 ± 0.0 51.5

CDANN[12] 72.0 ± 0.2 73.0 ± 0.2 10.2 ± 0.1 51.7
MTL[3] 70.9 ± 0.2 72.8 ± 0.3 10.5 ± 0.1 51.4

SagNet[13] 71.8 ± 0.2 73.0 ± 0.2 10.3 ± 0.0 51.7
ARM[27] 82.0 ± 0.5 76.5 ± 0.3 10.2 ± 0.0 56.2
V-REx[10] 72.4 ± 0.3 72.9 ± 0.4 10.2 ± 0.0 51.8

RSC[9] 71.9 ± 0.3 73.1 ± 0.2 10.0 ± 0.2 51.7

AND-mask[15] 70.7 ± 0.5 73.3 ± 0.2 10.0 ± 0.1 51.3
SAND-mask[20] 72.0 ± 0.5 73.2 ± 0.4 10.3 ± 0.2 51.8

Fishr[17] 72.3 ± 0.9 73.5 ± 0.2 10.1 ± 0.2 52.0

CCFP (ours) 72.4 ± 0.0 73.1 ± 0.2 10.2 ± 0.2 51.9
Table 10. Comparison with state-of-the-art methods on Colored MNIST benchmark.

Algorithm 0 15 30 45 60 75 Avg.

ERM[23] 95.9 ± 0.1 98.9 ± 0.0 98.8 ± 0.0 98.9 ± 0.0 98.9 ± 0.0 96.4 ± 0.0 98.0
IRM[1] 95.5 ± 0.1 98.8 ± 0.2 98.7 ± 0.1 98.6 ± 0.1 98.7 ± 0.0 95.9 ± 0.2 97.7

GroupDRO[18] 95.6 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 98.9 ± 0.0 96.5 ± 0.2 98.0
Mixup[25] 95.8 ± 0.3 98.9 ± 0.0 98.9 ± 0.0 98.9 ± 0.0 98.8 ± 0.1 96.5 ± 0.3 98.0
MLDG[11] 95.8 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 98.9 ± 0.1 99.0 ± 0.0 95.8 ± 0.3 97.9
CORAL[21] 95.8 ± 0.3 98.8 ± 0.0 98.9 ± 0.0 99.0 ± 0.0 98.9 ± 0.1 96.4 ± 0.2 98.0
MMD[12] 95.6 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 99.0 ± 0.0 98.9 ± 0.0 96.0 ± 0.2 97.9
DANN[7] 95.0 ± 0.5 98.9 ± 0.1 99.0 ± 0.0 99.0 ± 0.1 98.9 ± 0.0 96.3 ± 0.2 97.8

CDANN[12] 95.7 ± 0.2 98.8 ± 0.0 98.9 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 96.1 ± 0.3 97.9
MTL[3] 95.6 ± 0.1 99.0 ± 0.1 99.0 ± 0.0 98.9 ± 0.1 99.0 ± 0.1 95.8 ± 0.2 97.9

SagNet[13] 95.9 ± 0.3 98.9 ± 0.1 99.0 ± 0.1 99.1 ± 0.1 99.0 ± 0.1 96.3 ± 0.1 98.0
ARM[27] 96.7 ± 0.2 99.1 ± 0.0 99.0 ± 0.0 99.0 ± 0.1 99.1 ± 0.1 96.5 ± 0.4 98.2
V-REx[10] 95.9 ± 0.2 99.0 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 98.7 ± 0.1 96.2 ± 0.2 97.9

RSC[9] 94.8 ± 0.5 98.7 ± 0.1 98.8 ± 0.1 98.8 ± 0.0 98.9 ± 0.1 95.9 ± 0.2 97.6

AND-mask[15] 94.8 ± 0.2 98.8 ± 0.1 98.9 ± 0.0 98.7 ± 0.0 98.7 ± 0.1 95.5 ± 0.4 97.6
SAND-mask[20] 94.5 ± 0.4 98.6 ± 0.1 98.8 ± 0.1 98.7 ± 0.1 98.6 ± 0.0 95.5 ± 0.2 97.4

Fishr[17] 95.0 ± 0.3 98.5 ± 0.0 99.2 ± 0.1 98.9 ± 0.0 98.9 ± 0.1 96.5 ± 0.0 97.8

CCFP (ours) 95.6 ± 0.1 98.7 ± 0.0 98.8 ± 0.0 98.8 ±0.0 98.8 ± 0.1 95.7 ± 0.1 97.8
Table 11. Comparison with state-of-the-art methods on Rotated MNIST benchmark.



Algorithm C L V S Avg.

ERM[23] 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM[1] 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5

GroupDRO[18] 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup[25] 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG[11] 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL[21] 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD[12] 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN[7] 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6

CDANN[12] 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL[3] 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2

SagNet[13] 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM[27] 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
V-REx[10] 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3

RSC[9] 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1

AND-mask[15] 97.8 ± 0.4 64.3 ± 1.2 73.5 ± 0.7 76.8 ± 2.6 78.1
SAND-mask[20] 98.5 ± 0.3 63.6 ± 0.9 70.4 ± 0.8 77.1 ± 0.8 77.4

Fishr[17] 98.9 ± 0.3 64.0 ± 0.5 71.5 ± 0.2 76.8 ± 0.7 77.8

CCFP (ours) 98.1 ± 0.2 64.9 ± 0.1 74.5 ± 1.5 78.3 ± 0.2 78.9
Table 12. Comparison with state-of-the-art methods on VLCS benchmark.

Algorithm A C P S Avg.

ERM[23] 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM[1] 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5

GroupDRO[18] 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup[25] 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG[11] 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL[21] 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD[12] 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN[7] 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6

CDANN[12] 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL[3] 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6

SagNet[13] 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM[27] 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
V-REx[10] 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9

RSC[9] 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2

AND-mask[15] 85.3 ± 1.4 79.2 ± 2.0 96.9 ± 0.4 76.2 ± 1.4 84.4
SAND-mask[20] 85.8 ± 1.7 79.2 ± 0.8 96.3 ± 0.2 76.9 ± 2.0 84.6

Fishr[17] 88.4 ± 0.2 78.7 ± 0.7 97.0 ± 0.1 77.8 ± 2.0 85.5

CCFP (ours) 87.5 ± 0.1 81.3 ± 0.3 96.4 ± 0.3 81.4 ± 0.8 86.6
Table 13. Comparison with state-of-the-art methods on PACS benchmark.



Algorithm A C P R Avg.

ERM[23] 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM[1] 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3

GroupDRO[18] 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
Mixup[25] 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG[11] 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL[21] 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD[12] 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN[7] 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9

CDANN[12] 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL[3] 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4

SagNet[13] 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM[27] 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
V-REx[10] 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4

RSC[9] 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5

AND-mask[15] 59.5 ± 1.2 51.7 ± 0.2 73.9 ± 0.4 77.1 ± 0.2 65.6
SAND-mask[20] 60.3 ± 0.5 53.3 ± 0.7 73.5 ± 0.7 76.2 ± 0.3 65.8

Fishr[17] 62.4 ± 0.5 54.4 ± 0.4 76.2 ± 0.5 78.3 ± 0.1 67.8

CCFP (ours) 63.7 ± 0.3 55.5 ± 0.3 77.2 ± 0.4 79.2 ± 0.3 68.9
Table 14. Comparison with state-of-the-art methods on OfficeHome benchmark.

Algorithm L100 L38 L43 L46 Avg.

ERM[23] 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
IRM[1] 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6

GroupDRO[18] 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2
Mixup[25] 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
MLDG[11] 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.7
CORAL[21] 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6
MMD[12] 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2
DANN[7] 51.5 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7

CDANN[12] 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
MTL[3] 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6

SagNet[13] 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6
ARM[27] 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5
V-REx[10] 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4

RSC[9] 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6

AND-mask[15] 50.0 ± 2.9 40.2 ± 0.8 53.3 ± 0.7 34.8 ± 1.9 44.6
SAND-mask[20] 45.7 ± 2.9 31.6 ± 4.7 55.1 ± 1.0 39.0 ± 1.8 42.9

Fishr[17] 50.2 ± 3.9 43.9 ± 0.8 55.7 ± 2.2 39.8 ± 1.0 47.4

CCFP (ours) 56.4 ± 1.8 42.3 ± 0.1 58.0 ± 0.7 37.5 ± 0.4 48.6
Table 15. Comparison with state-of-the-art methods on TerraIncognita benchmark.



Algorithm clip info paint quick real sketch Avg.

ERM[23] 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
IRM[1] 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9

GroupDRO[18] 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
Mixup[25] 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
MLDG[11] 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL[21] 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.3 59.8 ± 0.2 50.1 ± 0.6 41.5
MMD[12] 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN[7] 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 12.1 ± 0.7 55.5 ± 0.4 46.8 ± 0.5 38.3

CDANN[12] 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
MTL[3] 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6

SagNet[13] 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
ARM[27] 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
V-REx[10] 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6

RSC[9] 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9

AND-mask[15] 52.3 ± 0.8 16.6 ± 0.3 41.6 ± 1.1 11.3 ± 0.1 55.8 ± 0.4 45.4 ± 0.9 37.2
SAND-mask[20] 43.8 ± 1.3 14.8 ± 0.3 38.2 ± 0.6 9.0 ± 0.3 47.0 ± 1.1 39.9 ± 0.6 32.1

Fishr[17] 58.2 ± 0.5 20.2 ± 0.2 47.7 ± 0.3 12.7 ± 0.2 60.3 ± 0.2 50.8 ± 0.1 41.7

CCFP (ours) 58.7 ± 0.2 19.4 ± 0.3 47.1 ± 0.3 13.4 ± 0.4 58.1 ± 0.4 50.5 ± 0.1 41.2
Table 16. Comparison with state-of-the-art methods on DomainNet benchmark.
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