
DDIT: Semantic Scene Completion via Deformable Deep Implicit Templates
(Supplementary Material)

Haoang Li1,2,∗ Jinhu Dong3,∗ Binghui Wen1,∗ Ming Gao1,2,∗

Tianyu Huang3 Yun-Hui Liu3 Daniel Cremers1,2,4
1Technical University of Munich 2Munich Center for Machine Learning (MCML)

3The Chinese University of Hong Kong 4University of Oxford
{haoang.li, ming.gao, bh.wen, cremers}@tum.de {jhdong, tyhuang, yhliu}@mae.cuhk.edu.hk

Overview
In this supplementary material, we provide additional

contents that are not included in the main paper due to the
space limit:

• Establishment and use of our latent code-based hierar-
chical tree in Section 1.

• Additional information about our ScanARCW dataset
in Section 2.

• Architecture of our neural network to predict latent
codes in Section 3.

• Additional experimental results in Section 4.

1. Hierarchical Tree
Recall that in Section 4.2 of the main manuscript, we im-

prove the efficiency of our transformation estimation based
on a latent code-based hierarchical tree. In this section, we
introduce how we establish and use such a tree.
Establishment of Tree. After pre-training deep implicit
templates, CAD models from the same category are associ-
ated with respective pre-trained latent codes. We first clus-
ter all these models based on K-Means algorithm, obtain-
ing M clusters. We treat the centers of these clusters as M
root nodes of the tree (see the first level of clustering in
Fig. 1). Then we apply K-Means algorithm again to each
cluster using a “tighter” threshold. For example, we divide
the m-th cluster (1 6 m 6 M ) into N sub-clusters. We
regard the centers of these sub-clusters as child nodes of
the m-th root node, as shown in the second level in Fig. 1.
We repeat the above procedures several times, i.e., a child
node at the i-th level of clustering is a parent node at the
(i + 1)-th level. Intuitively, the cluster centers at the i-th
level are more distinct than those at the (i+1)-th level. We

∗Haoang Li, Jinhu Dong, Binghui Wen and Ming Gao contributed
equally to this work.

… …

……

……

……

An input point set

Cluster

Centers

1st level

2nd level

3rd level

4th level

Root nodes

m-th

n-th

Best match

Figure 1. Illustration of our hierarchical tree based on the pre-
trained latent codes. We take the category of sofa for example.
Each tree node represents the center of a cluster. Red arrows rep-
resent our search path to find the best-matched node against the
input point set.

terminate clustering when the latent codes from the same
sub-cluster are similar enough.

Use of Tree. As mentioned in the main manuscript, given
an incomplete point set in the world frame, we search for its
best-matched CAD model along the above tree. We treat the
transformation between this model and the input point set
as the transformation of the input point set. Specifically, we
first match the input point set against surface points of M
root nodes at the first level. Without loss of generality, we



No intersection

No floating

2. Rationality

3. Completeness:

Point sets and meshes of 

background layout

Meshes

Point sets

1. Alignment

4. Watertightness

(a)

Background layout 

Depth map 

back-projection

Depth map 

rendering with 

camera poses of 

ScanNet dataset
CAD models from 

ShapeNet dataset

+

Watertightness processing

Transformation of 

Scan2CAD dataset

+

Adjustment for 

relationship rationality

Reconstructed incomplete 

point cloud

(b)

Figure 2. Illustration of our ScanARCW dataset. We take a representative scene for example (for visualization, we do not show ceiling and
two walls). (a) Dataset characteristics. (b) Dataset establishment.

assume that the m-th root node achieves the highest inlier
ratio. Then we match the input point set against N child
nodes of the m-th root node, and neglect the child nodes
of the other root nodes. Assume that the n-th child node
achieves the highest inlier ratio at the second level. We thus
continue our search from its child node. Intuitively, inlier
ratio at a higher level (e.g., the fourth level) is generally
higher than that at a lower level (e.g., the first level). The
reason is that the similarity between the input point cloud
and a candidate node becomes higher as the level increases.
For example, in Fig. 1, the input point set and the m-th node
at the first level only have similar overall shapes (both corre-
spond to one-seat sofas). By contrast, the input point set and
the best-matched node have not only close overall shapes
but also similar details. The above coarse-to-fine search
strategy avoids exhaustive search by the nodes at lower lev-
els, and also leads to fine matches based on the nodes at
higher levels.

2. Dataset

As introduced in Section 5 of the main manuscript, we
establish ScanARCW dataset for semantic scene comple-

tion. As a complement, Fig. 2(a) illustrates the character-
istics of our ScanARCW dataset, i.e., alignment, rational-
ity, completeness, and watertightness. Fig. 2(b) shows the
pipeline of our dataset establishment. We conduct water-
tightness processing based on ManifoldPlus [2], and render
depth maps using Blender1.

3. Network Architecture
As introduced in Section 4.1 of the main manuscript,

our latent code prediction network consists of three sub-
networks Npoint, Nintra, and Ninter. In the following, we in-
troduce details.
Point Feature Extraction Network Npoint. Given a set of
3D points (cardinality is M ), we first conduct 1D convolu-
tion to associate each point with an 8-dimensional feature.
Then we apply EdgeConv to these point features, increasing
their dimension from 8 to 16.
Intra-instance Feature Exaction NetworkNintra. We seg-
ment a point set into several patches at three different levels,
i.e., 1024, 256, and 64 patches. A patch at the i-th level is
composed of four sub-patches at the (i − 1)-level. We call

1https://www.blender.org/

https://www.blender.org/


RfD-Net [3]

First scene Second scene Third scene

DIMR [5]

DDIT (our)

Ground Truth

Sofa Chair Table Cabinet Bookshelf Bathtub

Figure 3. Additional qualitative comparisons with state-of-the-art methods in three representative scenes.

the center of a patch “control point”. All the control points
are from the above M points. We first consider 1024 con-
trol points at the first level. Each control point and its 8
nearest neighbors from the above M points define a graph.
We apply edgeConv to this graph, and each control point is
associated with a 32-dimensional feature.

Then we decrease the number of control points and also
increase the dimension of point feature. Let us take the
second level of segmentation (256 patches) for example.

One patch P(2) at the second level consists of four sub-
patches {P(1)

i }4i=1 obtained in the first level of segmen-
tation. Control points of four sub-patches define a three-
edged graph, i.e., one control point is the root, and the re-
maining three are neighbors. We treat such a root as the
control point of the patch P(2). We apply EdgeConv to this
graph, obtaining a 64-dimensional feature for the control
point of the patch P(2). We repeat the above procedures at
the third level of segmentation.



Input point cloud

Our completion result

Figure 4. Qualitative result of our background and foreground
completion in a representative scene (for visualization, we do not
show ceiling and two walls). The segmented background and fore-
ground point sets are shown in blue and red, respectively.

Table 1. Quantitative result of our background completion.

PCR

Our method 94.83%

We update the above features of control points based on
a set of transformer blocks (the number of blocks is 6 in
our context). Then we employ 1D convolution to increase
the dimension of each feature from 128 to 512. After that,
we aggregate 64 features into a single feature by max pool-
ing. Finally, we exploit MLP to map this 512-dimensional
feature into a 256-dimensional code.
Inter-instance Feature Exaction Network Ninter. We feed
the above 256-dimensional latent codes of the i-th instance
and its N neighbors to a multi-head attention module to ob-
tain a new 256-dimensional feature (the number of heads is
10 in our context). As mentioned in the main manuscript,
we do not directly treat this feature as the updated latent
code. Instead, we concatenate this feature and the origi-
nal code to obtain a 512-dimensional feature, followed by
mapping it back to a 256-dimensional latent code based on
MLP. The above data conversion can be summarized by
(1 +N)× 256→ 1× 256→ 1× 512→ 1× 256.

4. Additional Experimental Results
We first provide additional comparisons with state-of-

the-art methods in Section 4.1. Then we introduce our

background completion in Section 4.2. After that, we show
some unsatisfactory results of our method in Section 4.3,
followed by presenting additional results of ablation study
in Section 4.4.

4.1. Additional Comparisons

In Section 6.2 of the main manuscript, we compare
our DDIT with state-of-the-art methods RfD-Net [3] and
DIMR [5]. As shown in Fig. 3, we provide additional com-
parison results. For RfD-Net and DIMR, there is still room
for accuracy improvement due to the lack of effective shape
constraints. Our DDIT is more accurate than the above
methods since deep implicit template provides constraints
on the overall shapes and latent code guarantees fine details.

4.2. Background Completion

As mentioned in Section 4 of the manuscript, we also
complete the background layout. Our completion con-
sists of two main steps. First, given the segmented back-
ground point sets, we employ MLESAC [6], a variant of
RANSAC to fit multiple planes. Second, we adjust some
fitted planes to reduce the effects of noise. For one thing,
we merge two over-fitted planes that have similar homoge-
neous coordinates. For another, we empirically find that
some fitted walls may slightly incline due to insufficient
observed points, while the fitted floor is more reliable. Ac-
cordingly, we enforce the Manhattan/Atlanta world assump-
tion [1, 4] to make an inclined wall orthogonal to the floor.
To quantitatively evaluate our background completion, we
adopt the point coverage ratio (PCR) introduced in the main
manuscript as the metric. Fig. 4 and Table 1 show that our
completion is reliable.

4.3. Unsatisfactory Results of Our Method

While our DDIT is generally accurate, it may still lead
to unsatisfactory results in a small number of scenes. We
empirically classify these results into two categories, i.e.,
inconsistent shapes and redundant parts.
Inconsistent Shapes. As shown in Fig. 5(a), the ground
truth meshes show uncommon shapes, but our generated
meshes exhibit regular shapes. The reason for such an in-
consistency is that we pre-train a deep implicit template us-
ing the meshes with regular shapes. Our DDIT can hardly
deform such a template into an uncommon shape. A poten-
tial solution is to incorporate CAD models with uncommon
shapes for template training.
Redundant Parts. Fig. 5(b) shows that our generated
meshes have some redundant parts. One reason is that our
SDF value prediction inevitably results in some incorrect
values. Another reason is that our estimated transformation
may be affected by noise, and thus the input point cloud
of our latent code prediction network is not strictly in the
canonical frame. Accordingly, our estimated latent code



Generated meshes

Ground truth meshes
(a)

Generated meshes

Ground truth meshes
(b)

Figure 5. Representative unsatisfactory results of our DDIT. (a)
Inconsistency between the ground truth and generated table legs
and chair legs. (b) Redundant circular parts on the generated bed
and planar parts on the generated chair.

is unreliable to some extent. We find that these redundant
parts typically float around the main mesh and also have
small volumes. Therefore, it is feasible to filter out these
parts using a volume threshold.

Intra

Intra+Inter
Figure 6. Ablation study of our inter-instance information. We
present a qualitative comparison in a representative scene.

Observed point set No-optim Optim

Figure 7. Ablation study of our optimization strategy. We present
qualitative comparisons on two representative instances.

4.4. Ablation Study

Recall that in Section 6.3 of the main manuscript, we
present ablation study of our inter-instance information and
optimization strategy. Fig. 6 shows an additional test re-
garding inter-instance information. Intra+Inter using both
intra- and inter-instance information provides more com-
plete results than Intra using only intra-instance informa-
tion. This result demonstrates the effectiveness of inter-
instance information. As shown in Fig. 7, we present addi-
tional tests regarding optimization strategy. Compared with
the original meshes denoted by No-optim, the optimized
meshes denoted by Optim are better aligned to the observed
point sets.



References
[1] James Coughlan and Alan Yuille. Manhattan world: Com-

pass direction from a single image by Bayesian inference. In
IEEE International Conference on Computer Vision (ICCV),
volume 2, pages 941–947, 1999. 4

[2] Jingwei Huang, Yichao Zhou, and Leonidas Guibas. Man-
ifoldPlus: A robust and scalable watertight manifold sur-
face generation method for triangle soups. arXiv preprint
arXiv:2005.11621, 2020. 2

[3] Yinyu Nie, Ji Hou, Xiaoguang Han, and Matthias Niessner.
RfD-Net: Point scene understanding by semantic instance re-
construction. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4608–4618, 2021. 3,
4

[4] Grant Schindler and Frank Dellaert. Atlanta world: An ex-
pectation maximization framework for simultaneous low-level
edge grouping and camera calibration in complex man-made
environments. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), volume 1, pages 203–209, 2004.
4

[5] Jiaxiang Tang, Xiaokang Chen, Jingbo Wang, and Gang Zeng.
Point scene understanding via disentangled instance mesh re-
construction. In European Conference on Computer Vision
(ECCV), pages 684–701, 2022. 3, 4

[6] Philip Torr and Andrew Zisserman. MLESAC: A new ro-
bust estimator with application to estimating image geom-
etry. Computer vision and image understanding (CVIU),
78(1):138–156, 2000. 4


