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In this document, we provide proof of theorems, compar-
isons with related works, additional implementation details,
and experimental results.

1. Proof of Theorems
Theorem 1.1. [4, 7] Given µ and ν on a compact con-
vex domain Ω ⊂ Rd, there exists an OT plan for the cost
c(x,y) = g(x−y), with g strictly convex. It is unique and
of the form (id, T#)µ (id: identity map), provided that µ
is absolutely continuous with respect to Lebesgue measure
and ∂Ω is negligible. Moreover, there exists a Kantorovich’s
potential φ, and OT map T can be represented as follows:

T (x) = x− (∇g)−1[∇φ(x)].

Theorem 1.2. Let x̃t and xt be the samples of step t ob-
tained by DPM-OT and forward diffusion respectively, and
t ≤ M , ζM be the error at step M induced by the opti-
mal trajectory, then there is a constant Ct > 0 satisfies the
following inequality.

∥x̃t − xt∥ ≤ Ct ∥ζM∥ (1)

Proof. Since the reverse diffusion function sequence {ft}
is continuous, there is continuous function ct(·) from Rd to
R that makes the following formula hold

x̃t = ft ◦ · · · ◦ fM−1(xM + ζM )

= ft ◦ · · · ◦ fM−1(xM ) + ct(ζM )ζM

= xt + ct(ζM )ζM

(2)

So we can get

∥x̃t − xt∥ = ∥ct(ζM )ζM∥ ≤ |ct(ζM )| ∥ζM∥ ≤ Ct ∥ζM∥
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Theorem 1.3. Let Ldpm ot be the error between the data
distribution generated by DPM-OT and the target data dis-
tribution which is defined in Eq. 3, Lvlb is the variational
lower bound on negative log-likelihood between data distri-
bution generated by vanilla DPM and the target data distri-
bution which is defined in Eq. 4. We have Ldpm ot ⩽ Lvlb,
i.e., Lvlb is the upper bound of Ldpm ot.

Ldpm ot =L0 + L1 + ...+ LM + LT

=− log p̃θ(x0|x1) +DKL(q(xT |x0)), p(xT ))

+

M−1∑
t=1

DKL(q(xt|xt+1,x0)||p̃θ(xt|xt+1))

+DKL(q(xM |xT ,x0)||p̃θ(xM |xT )),

(3)

Lvlb =− log pθ(x0|x1) +DKL(q(xT |x0))||p(xT ))

+
∑
t>1

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt))
(4)

Proof. It may be assumed thatXt = xt − µt+1(xt+1),

pθ(xt|xt+1) = N (xt|µt+1(xt+1), σ
2
t+1I)

=
1

(2π)d/2σd
t+1

exp

(
− 1

2σ2
t+1

XT
t Xt

)
(5)

pθ(x̃t|xt+1) = N (xt + ζt|µt+1(xt+1), σ
2
t+1I)

=
1

(2π)d/2σd
t+1

exp

(
− 1

2σ2
t+1

(
Xt − ζt)

T (Xt − ζt

))
(6)

By definitions of pθ(xt|xt+1) and pθ(x̃t|xt+1), we know



the following equation∣∣∣∣log pθ(xt|xt+1)

pθ(x̃t|xt+1)

∣∣∣∣
=

1

2σ2
t+1

∣∣∣2xtζt + ζT
t ζt − 2µt+1(xt+1)

T ζt

∣∣∣
≤ 1

2σ2
t+1

(
2||xt|| · ||ζt||+ ||ζt||2 + 2||µt+1(xt+1)||· ∥ ζt ∥

)
=

1

2σ2
t+1

(
2||xt||+ ||ζt||+ 2||µt+1(xt+1)||

)
||ζt||

(7)

Suppose x is bounded with [a, b]d, then there is constant
At > 0 makes

2||xt||+ ||ζt||+ 2||µt+1(xt+1)|| ≤ At (8)

Applying inequality 8 to equation 7, we get

|D̃KL −DKL| =
∣∣∣∣∫

Xt

q(xt|xt+1) log
pθ(xt|xt+1)

pθ(x̃t|xt+1)
dxt

∣∣∣∣
≤ At

2σ2
t+1

· ||ζt||

(9)

where D̃KL = DKL(q(xt|xt+1)||pθ(x̃t|xt+1)), DKL =
DKL(q(xt|xt+1)||pθ(xt|xt+1)). Therefore there is

|Ldmot − L0:M
vlb |

≤
M∑
t=0

|D̃KL −DKL|

≤(M + 1)max
t

At

2σ2
t+1

|Ct| · ||ζM ||

(10)

That is

Ldmot ≤ L0:M
vlb + (M + 1)max

t

At

2σ2
t+1

|Ct| · ||ζM || (11)

Because of ζM = O(N− 1
2 ), we can make ζM arbitrarily

small by increasing the number of OT samples N . For a
given DPM, there exists ζM such that the following for-
mula is true.

(M + 1)max
t

At

2σ2
t+1

|Ct| · ||ζM || ≤ LM+1:T
vlb (12)

So we have
Ldmot ≤ Lvlb (13)

2. Comparisons with related works

This part mainly introduces three related works and their
comparison to our method.

First, while the algorithm of this paper is inspired by Ref.
[1], they differ in two main ways. 1) The algorithm for
solving the OT map in our model does not need to obtain
the latent codes using the autoencoder in advance; 2) As
shown in Algorithm 1 of our paper, our algorithm is matrix-
based, which is not trivial in engineering. In this paper, the
ŵi is calculated via the Monte Carlo (MC) method, which
is estimated µ-volume of each cell Wi; g(·) is the OT map
that transfers Gaussian noise to noisy image xM .

Second, we analyze two acceleration models that employ
truncated diffusion trajectories [8, 6] and compare them
with our approach. Ref. [6] firstly uses an encoder to en-
code the image noise into a low dimension vector z, then
uses a decoder to generate sample xT ′

from latent code z,
finally, using the DDPM to denoise xT ′

to clean image in
fewer steps; Ref. [8] utilizes an implicit generator to map
the Gaussian noise to truncated noisy images and then ap-
plies the diffusion model for image generation; our work
adopts an OT map to transfer the Gaussian noise to latent
noisy images. Methods of Ref. [8, 6] require a possibly
expensive training stage before they can be used for effi-
cient sampling. They might require nontrivial effort to adapt
the method to different models and the number of sampling
steps. In contrast, our approach does not need to train ad-
ditional network models and only requires the computation
of the OT map. Secondly, under the guidance of OT theory,
our method achieves higher-quality image generation with
fewer reverse diffusion steps, especially in alleviating mode
collapse.

3. Implementation Details

Additional details about hyperparameter settings of Al-
gorithm 1 and Algorithm 2 are elucidated in this section.
In the experiments, we instantiate the DPM model sθ of
DPM-OT with pre-trained models of NCSNv2 [?]. In addi-
tion, for a fair comparison, we also adopted the same sam-
pling schedule {(bt, σt)}Tt=0 as NCSNv2.

In Algorithm 1, we use the Monte Carlo method to solve
the SDOT map. We set the number of Monte Carlo sam-
ples N = 10 × |I|, where | · | denotes the number of el-
ements in the set. For the learning rate lr, we set the lr
on the datasets CIFAR10 [3], CelebA [5] and FFHQ [2] to
lr = 0.1, lr = 20, and lr = 50, respectively. For bet-
ter convergence, we double the number of samples N and
multiply the learning rate lr by 0.8 when the energy func-
tion E(h) has not decreased for s = 50 steps. Moreover,
we set threshold τ = 8 × 10−4. When the energy function
E(h) < τ or the total number of iteration steps is greater
than 10000, the optimization of h will be stopped.



In Algorithm 2, reverse diffusion steps M is a variable
that satisfies 0 < M < T . We have carried out five experi-
ments on the datasets CIFAR10, CelebA, and FFHQ, where
values of M are 5, 10, 20, 30 and 50 respectively. We find
that with the increase of M , the image FID score will de-
crease, but this decline will tend to be flat with the increase
of M , which is reflected in Table 1 of the paper.

4. Additional Results
In this section, we show three more quantitative and

qualitative results of the proposed DPM-OT on FFHQ, Ci-
far10, and CelebA respectively.

For a fair comparison with baselines, we drew the NFE-
FID curves in Fig. 4 which demonstrate the efficacy of our
method in FID scores under the same NFE conditions.
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Figure 1. NFE-FID curves on CIFAR-10 and CelebA 64×64.

Furthermore, Fig. 2 and Fig. 3 show the results obtained
by our model with 10 steps of inverse diffusion on the
FFHQ 256×256 and Cifar10, respectively, and Fig. 4 shows
the results obtained with only 5 steps of inverse diffusion on
the CelebA dataset. As these results show, our model can
obtain high-quality images after 5-10 reverse diffusion.
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Figure 3. The visualization of our model on Cifar10 (10 steps).

Figure 4. The visualization of our model on CelebA (5 steps).


