
A. Proof of Theorems
Theorem 1. Suppose a shift neural network in the form
f̂w(x) =

∑J
j=1

∑dj

k=1 w
j
kh

j
k(x), where wj

k ∈ {0}∪{±2p}
approximates the true unknown function f(x),x ∈ IRd.
There is another dense neural network with w′j

k ∈ {±2p}
that has a similar form f̂w′(x) =
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such that ∀x ∈ IRd, f̂w(x) = f̂w′(x).

Proof. The proof is straightforward by isolating zero shifts,
and recreating these null weights in a larger dense shift net-
work with opposite weight signs. Define the jth layer as

hj(x) = a(Wjhj−1(x) + bj),

where h0(x) = x, J is the total number of layers each of
output dimension dj and W of size dj × dj−1 can be a
Toeplitz matrix for a convolutional layer, a(·) is the acti-
vation function, and b is the bias term. Define the shift
network approximation of f(x) as

f̂w(x) =

J∑
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in which wj
k ∈ {0} ∪ {±2p} defines a shift network. We

re-create an equivalent desne shift network by isolating null
weights wj

k = 0 and replacing them with a larger dense shift
network of an arbitrary weights but with opposite signs.
Now suppose w0 = {k | wj

k = 0} and w1 = {k | wj
k ̸= 0}

where w = [w⊤
0 w

⊤
1 ], dj = d0j + d1j
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Assume w̃ ∈ {±2p} is a nonzero shift arbitrary vector of
elements w̃0k,
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By defining w′ = [w̃,−w̃,w0] of increased size d′j =
d0j + dj ≥ dj , one may rearrange terms and rewrite the
neural approximate as

f̂w′(x) =

J∑
j=1

d′
j∑

k=1

w′j
k h
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k (x),

where h′j
k is either hj

0k or hj
1k depending on the dense shift

weight w′j
k ∈ {±2p}.

Theorem 2. Dense shift network with a Lischitz activation
function is a universal approximator on a compact set K
for any measurable continuous function f ∈ C(K) with re-
spect to the measure µ, given that its weight and activations
w, h(x) remain close to the regular network in the follow-
ing sense

∫
K
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)2
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,

where ϵ
4 is the approximation quality of the regular neural

network,
(
w, hj(x)

)
and

(
w′, h′j(x)

)
are the weight and

activations of the regular and DenseShift networks in layer
j, respectively.

Proof. It is well-known that shallow networks are universal
approximator [18] as well as deep networks [50]. These re-
sults holds in infinity norm, so is also valid in ℓp norm with
p < ∞. For the simplicity of the mathematical mechanics
here we only focus on the multilayer perceptron [18] on ℓ2
norm ∥∥∥f − f̂

∥∥∥ =

∫
K

∣∣∣f(x)− f̂(x)
∣∣∣2 dµ (9)

Suppose f̂w is a real weight neural network and f̂w′ is a
dense shift version of the same network f̂w, of course with
weights w′ ∈ {±2p}.∥∥∥f − f̂w′

∥∥∥
=

∫
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∣∣∣f(x)− f̂w′(x)± f̂w(x)
∣∣∣2 dµ (10)

=
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|f(x)− f̂w(x)|2dµ (11)

+
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|f̂w(x)− f̂w′(x)|2dµ (12)

+2

∫
K

|[f(x)− f̂w(x)][f̂w(x)− f̂w′(x)]|dµ.(13)

In order to show that shift networks are universal approx-
imator it is enough to show that

∥∥∥f − f̂w′

∥∥∥ is bounded by
an arbitrarily small ϵ > 0. The first term (11) is bounded by
ϵ
4 [18]. The second term (12) is bounded given the shift net
closeness assumption∫
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The last term (13) is bounded by ϵ
2 thanks to the Cauchy-

Schwartz inequality. So (9) is bounded by ϵ by merging the
pieces together.




