
Differentiable Transportation Pruning

Yunqiang Li1 Jan C. van Gemert2 Torsten Hoefler3

Bert Moons1 Evangelos Eleftheriou1 Bram-Ernst Verhoef1

1Axelera AI 2TU Delft 3ETH Zurich

A. Supplementary Material
A.1. Optimal coupling to regularized problem

Here we prove the optimal coupling to the regularized prob-
lem in Eq. (7) is:

Pε = ef/ε ⊙ e−C/ε ⊙ eg/ε. (16)

Proof. Introducing two dual variables f ∈ Rn and g ∈
R2 for marginal constraints P12 = a and PT

1n = b,
given the discrete entropy of a coupling matrix H(P) =
−
∑

ij Pij(log(Pij) − 1), the Lagrangian of Eq. (7) is op-
timized as follows:

ξ(P, f ,g) = ⟨C,P⟩−εH(P)−⟨f ,P12 − a⟩−
〈
g,PT

1n − b
〉
.

(17)
First order conditions then yield:

∂ξ(P, f ,g)

∂Pij
= C+ ε log(Pij)− fi − gj = 0, (18)

which result for an optimal coupling to the regularized prob-
lem, in the matrix expression shown in Eq. (16).

A.2. Dual problem computation

Here we prove that minimizing the regularized optimal
transport distance in Eq. (7) is equivalent to maximizing its
dual problem:

max
f∈Rn,g∈R2

⟨f ,a⟩+ ⟨g,b⟩ − ε
〈
ef/ε, e−C(s)/ε · eg/ε

〉
(19)

Proof. We start from the result in Eq. (16), and substitute it
in the Lagrangian ξ(P, f ,g) of Eq. (17), where the optimal
P is a function of f and g, we obtain that the Lagrange dual
function equals:

f ,g 7→
〈
ef/ε,

(
e−C(s)/ε ⊙C(s)

)
eg/ε

〉
− εH

(
ef/ε ⊙ e−C(s)/ε ⊙ eg/ε

) (20)

The negative entropy of P scaled by ε, namely
ε ⟨P, logP− 1n×2⟩, can be stated explicitly as a function

of f ,g,C:

ε ⟨P, logP− 1n×2⟩

=
〈
ef/ε ⊙ e−C(s)/ε ⊙ eg/ε, f1T

2 + 1ng
T −C(s)− ε1n×2

〉
=−

〈
ef/ε,

(
e−C(s)/ε ⊙C(s)

)
eg/ε

〉
+ ⟨f ,a⟩+ ⟨g,b⟩−

ε
〈
ef/ε, e−C(s)/ε · eg/ε

〉
therefore, the first term in Eq. (20) cancels out with the first
term in the entropy above. The remaining terms are those
appearing in Eq. (19).

A.3. Expensive to train with Sinkhorn’s algorithm

The bi-level optimization problem in Eq. (10) and Eq. (11)
is expensive to train with Sinkhorn’s algorithm: During for-
ward pass, per mini-batch the inner optimization in Eq. (11)
needs to perform Sinkhorn’s iterative algorithm for hun-
dreds of iterations to converge, which is computationally
inefficient. During the back-propagation pass, the gradient
of P∗

ε(s) with respect to the importance scores s is com-
puted by differentiating [48] through all Sinkhorn iterations,
which is expensive. We display the forward and backward
of Sinkhorn algorithm in Fig. 5.

A.4. Bregman divergence based optimization

In this paper we use similar Bregman Divergence Dh as
[66] based on entropy functionH(x) = −

∑
i xi

(
log(xi)−

1
)

as:

DH(x,y) = −
∑
i

xi log
xi

yi
+
∑
i

xi. (21)

Based on the defined Bregman Divergence, a single proxi-
mal point iteration for problem (4) can be written as:

P(ℓ+1) = min
P∈U(a,b)

⟨C,P⟩ − εDH(P,P(ℓ))

= min
P∈U(a,b)

〈
C− ε log P(ℓ),P

〉
− εH(P).

(22)

Denote C′ = C − ε log P(ℓ). Note that for optimization
problem 22, P(ℓ) is a fixed value that is not relevant to op-
timization variable P. Comparing to Eq. (7), the problem

			Score	
	

𝑠!

𝑠"

…
…

𝑠# 1	0	

Eq. (3)	

C	 K	

……

			Target	 			Sinkhorn		𝑡 = 1,… , 𝑇

			Transportation	
Plan

……

			Forward	
	

			Backward	
	

𝑔(") 𝑓($) 𝑔($) 𝑔(%&") 𝑓(%) 𝑔(%)

Eq. (23)	 Eq. (24)	 Eq. (23)	 Eq. (24)	 …
… …		…		

Figure 5. The display of training with Sinkhorn’s algorithm. We show the forward and backward pass over one single layer: given
importance score s, the cost matrix is computed by Eq. (3), we thus get K; in forward pass we input K to iteratively compute f (t+1) with
Eq. (27) and g(t+1) with Eq. (28) using Sinkhorn algorithm for T iterations; during back-propagation pass, the gradient of soft mask with
respect to the importance scores is computed by differentiating through all Sinkhorn iterations. A large T makes it expensive to train.

Table 5. Training setting: For the SGD optimizer, in the parentheses are the momentum and weight decay. For ImageNet, batch size is 64
per GPU. We learn the soft mask using cosine learning rate schedule.

Settings CIFAR ImageNet

Optimizer SGD (0.9, 5e-4) SGD (0.9, 1e-4)

LR schedule (soft mask) Cosine LR schedule (0.1)

LR schedule (finetune) Multi-step (0:1e-2, 60:1e-3, 90:1e-4) Multi-step (0:1e-2, 30:1e-3, 60:1e-4, 75:1e-5)

Training Epoch 120 + 120 90 + 90

Batch size 256 256

in Eq. (22) can be solved by Sinkhorn iteration by replacing
Gibbs kernel K by K′ = e−

C′
ε = e−

C
ε ⊙P(ℓ). With this re-

organization, we can solve it with Sinkhorn algorithm. [66]
have shown both theoretically and empirically that a sin-
gle Sinkhorn inner iteration is sufficient to converge under
a large range of fixed ε, we therefore compute P(ℓ+1) as:

P(ℓ+1) = ef
(ℓ+1)/ε ⊙

(
e−

C
ε ⊙P(ℓ)

)
⊙ eg

(ℓ+1)/ε, (23)

which is the expression of Eq. (13).

A.5. Proximal point iteration as iterative Sinkhorn

We refer to the proof in Chapter 4.2 of the book [51].
The general setting for proximal point iteration is to define
Gibbs kernel as K = e−

C
ε ⊙ P(ℓ), the proximal point iter-

ations thus have the form:

P(ℓ+1)
ε (s) =ef

(ℓ+1)/ε ⊙
(
e−

C
ε ⊙P(ℓ)

)
⊙ eg

(ℓ+1)/ε

=
(
ef

(ℓ+1)/ε ⊙ · · ⊙ef
(1)/ε

)
⊙
(
e−

(ℓ+1)C
ε

⊙P(ℓ)
)
⊙
(
eg

(ℓ+1)/ε ⊙ · · ⊙eg
(1)/ε

)
.

(24)

The proximal point iteration iteratively applies Sinkhorn’s
algorithm with a e−

C
ε/ℓ kernel, i.e. with a decaying regular-

ization parameter ε/ℓ, therefore it can perform an automatic
decaying schedule on the regularization as ℓ → ∞ to grad-
ually approach the optimal discrete plan.

A.6. Sinkhorn iterations on dual problem

A simple approach to solving the unconstrained maximiza-
tion problem in Eq. (19) is to use an exact block coordinate
ascent strategy, namely to update alternatively f and g to
cancel the respective gradients in these variables of the ob-
jective of (19). Indeed, one can notice after a few elemen-
tary computations that, writing Ldual(f ,g, s) for the objec-
tive of (19), we have the gradients, w.r.t., f and g as follows:

∇fLdual(f ,g, s) = a− ef/ε ⊙ (Keg/ε), (25)

∇gLdual(f ,g, s) = b− eg/ε ⊙ (Kef/ε), (26)

where K = e−C(s)/ε is defined as the Gibbs kernel in
Sinkhorn’s algorithm. Block coordinate ascent can there-
fore be implemented in a closed form by applying suc-
cessively the following updates, starting from any arbitrary
g(1), for t ≥ 1:

f (t+1) = ε log a− ε log (Keg
(t)/ε); (27)

g(t+1) = ε log b− ε log (KTef
(t+1)/ε). (28)

A.7. Experimental setting details

How is the ε selected. The ε controls a trade-off between
exploration and exploitation. A large ε leads to a greater

Table 6. Training setting: For the SGD optimizer, in the parentheses are the momentum and weight decay. For ImageNet, batch size is 64
per GPU. We learn the soft mask using cosine learning rate schedule.

Datasets Backbone Speedup Pruning ratio

CIFAR-10 ResNet-56 −− [0, p, p, p], p ∈ {0.5, 0.7, 0.9, 0.925, 0.95}
CIFAR-100 VGG-19 −− [0:0, 1-15:p], p ∈ {0.5, 0.6, 0.7, 0.8, 0.9}
ImageNet ResNet-34 1.32× [0, 0.50, 0.60, 0.40, 0]

ImageNet ResNet-50 2.31× [0, 0.60, 0.60, 0.60, 0.21]

ImageNet ResNet-50 2.56× [0, 0.74, 0.74, 0.60, 0.21]

ImageNet ResNet-50 3.06× [0, 0.68, 0.68, 0.68, 0.50]

exploration by a softer mask. We verify that soft masks
converge to hard masks by training for few epochs and mea-
suring the average of the squared differences between them
for different ε candidates. As is common to hyperparameter
tuning, this requires some effort. Therefore for similar ar-
chitectures we used the same ε, e.g., ε = 1 for lightweight
ResNet-56 and MobileNetV2.
Training setting. In Table 5 we summarize the detailed
training settings of this work. For easier comparison, we
use same training settings as [63] in finetuning. In our soft
mask learning phase, we use a cosine learning rate sched-
ule for updating the importance scores and network weights
with SGD.
Pruning ratio. We use same pruning ratio as in [63] for fair
comparison. In Table 6 we give the specific pruning ratio
used for our experiments in the paper. We here briefly ex-
plain how we set the pruning ratio. We use two different ar-
chitectures: single-branch (i.e. VGG-19) and multi-branch
(i.e. ResNet). (i) For VGG19, we use the following prun-
ing ratio setting. As an example, “[0:0, 1-9:0.3, 10-15:0.5]”
means “for the first layer (index starting from 0), the prun-
ing ratio is 0; for layer 1 to 9, the pruning ratio is 0.3; for
layer 10 to 15, the pruning ratio is 0.5”. (ii) For a ResNet,
if it has N stages, we will use a list of N floats to represent
its pruning ratios for the N stages. For example, ResNet-56
has 4 stages in conv layers, then “[0, 0.7, 0.7, 0.7]” means
“for the first stage (the first conv layer), the pruning ratio
is set as 0; the other three stages have pruning ratio of 0.7”.
Besides, since we do not prune the last conv layer in a resid-
ual block, which means for a two-layer residual block (for
ResNet-56), we only prune the first layer; for a three-layer
bottleneck block (for ResNet-34 and ResNet-50), we only
prune the first and second layers.
Unstructured pruning. For unstructured pruning, each in-
dividual weight needs to couple an importance score which
may cause higher memory cost, therefore we follow previ-
ous works that use the magnitude of the weight parameter
as an importance score.

A.8. Training recipe variants

Our primary goal was to compare pruning methods as fairly
as possible. The reported results for ResNet-50 used the

Table 7. Training recipes for ResNet50 under structured prun-
ing on ImageNet-1K. Our method is flexible for different training
recipes.

Recipe Speed Up Acc.

Baseline 2.31× 75.54
Stonger 77.16

Table 8. FLOPs budgets for WideResNet-26 on CIFAR-100
Method Budget (%) Acc.

Unpruned 100 80.21

ChipNet [60] 40 76.88
Ours 78.63

ChipNet [60] 20 77.15
Ours 78.17

0 5 10 15 20 25
Layer index

0

0.5

1

Sp
ar

sit
y

ra
tio

Initialization
3rd epoch
20th epoch

Figure 6. Learned sparsity ratios over layers under FLOPs budget.

baseline training recipe from CReg for fair comparisons.
Here, we performed additional analyses, pruning ResNet-
50 on ImageNet with Label Smoothing, TrivialAugment,
Random Erasing, Mixup, and Cutmix to form a stronger
training recipe. We did not apply other effective techniques
such as Long Training (e.g. 600 epochs), LR optimizations,
EMA, Weight Decay tuning, and Inference Resize tuning,
which may further improve by ∼3% accuracy as shown in
PyTorch. We trained on a large batch size of 4,096 on 8
NVIDIA A100 GPUs, scaling up the learning rate by 5×.
As expected, Table 7 shows increased pruning accuracy,
showing that our method can be augmented with different
training recipes.

A.9. Extension to FLOPs and latency budgets

The FLOPs or latency budget pruning can be viewed as a
learnable differentiable sparsity allocation problem. We for-
mulate it in the following.
Formulation. Given budget BF , the network weights as w,

the optimization problem of kept ratios A = {α(l)}l=1,...,L

(i.e., 1−sparsity ratio) of L layers can be written as:

argmin
m,w,A

Ltrain
(
f(x;w,m,A)

)
,

s.t.
1

n

∑n

i=1
m

(l)
i = α(l), m(l) ∈ {0, 1}n,

F(A) ≤ BF , 0 ≤ A ≤ 1.

(29)

whereLtrain is training loss. F(A) is the consumed resource
corresponding to the kept ratios. If A is predefined layer-
wise or global kept ratio, the formulation degrades to our
original formulation in Eq. (1). For FLOPs or latency bud-
gets, we learn the kept ratios. Note F(A) can be denoted
as a function of kept ratio, see [60] and [54]. By setting
A = Sigmoid(Θ) where Θ is a group of learnable param-
eters where 0 ≤ A ≤ 1 is satisfied naturally, we optimize
Θ to learn kept ratio A by minimizng Ltrain and a budgets
penalty loss ||F(A)−BF ||2. Our optimal transport method
dynamically aligns to learned ratios A.

We add the experimental comparisons in Table 8 with
FLOPs budget for WideResNet-26 for CIFAR-100.
FLOPs budget. We use the same way as [60] to calculate
the FLOPs budget that assumes a sliding window is used to
achieve convolution and the nonlinear computational over-
head is ignored. We define FLOPs budget as:

F(A) =
∑N

j=1(Kj · nj−1 · α(j−1) + 1) · nj · α(j) ·Aj∑N
j=1(Kj · nj−1 + 1) · nj ·Aj

,

(30)
where N denotes the number of convolutional layers in the
network, Kj denotes area of the kernel, and Aj and nj de-
note area of the feature maps and the channel count, respec-
tively, in the jth layer.

We note that the FLOPs budget is formulated as a func-
tion of kept ratios α(j). Also the the latency cost of each
layer can be approximated by the kept ratios of previous
layer and current layer as shown in [24].

