A. Proof of Theorem 1.

First, we can show with PAC learning [56] that with la-
beled data set D; of size [ where [ > max{b]—(_, In @} the

generalization error of the initial segmentor f? is bounded
by b? with probability d, which is a standard PAC supver-
sied learning problem. Then, without loss of generality, we
show the probability that the generalization error of f5 de-
noted by d(f¥, f) is larger than b¥ is at most 4.

we analyze the prediction difference between the seg-
mentor f2"’ and the total dataset which, at the kth iteration,
contains the labeled set and the unlabeled set annotated by
the previous segmentor ff_l. We denote this dataset as 0.
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Since the upper bound of the generalization error of the seg-

mentor fF1is %71, we have d(f*, 09) < “’lbiul . Since o9
contains unlabeled data which may be incorrectly labeled,
o2 must be sufficient to guarantee that if the difference of
f% and o9 is less than that of f* which means f} “learns”
the mistake, then the probability that the generalization er-
ror of f§ is less than b5 is less than 6. Let M = uby ™!, then
the probability that f§ has a lower observed difference with
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As the function Cxt(1—1z)*~t is monotonically decreasing
in £ <z <1, it follows that
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We can approximate the RHS with Poisson Theorem.
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We show at the beginning that [ > b% In ‘i(sl, thus
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Given at most |#H| — 1 (excluding the optimal fx) segmen-
tor with generalization error no less than b5 having a lower
observed difference with o5 than fx in hypothesis class H,
the probability that

Prld(f5, fx) > b5] <6

. In order to let the above derivation holds, we need one
more condition which is that the generalization error of
) 1’“_1, which is the counterpart model in the last iteration,
is bounded by bf ~1 by probability 6. When k = 0, which is
the initial segmentor that trains on the labeled set only, this
condition is satisfied (by supervised PAC learning). When
k =1, the above holds as the the generalization error of f{)
is bounded by by by probability §. Then, by deduction, we
can prove that the above holds for any k.

B. Quantitative Analysis of Homogenization
problem

To quantitatively analyze the homogenization problem
of Co-training (or to quantify the diversity between two
models in the Co-training), we further propose two metrics
to measure the similarity in target space. As discussed in
Section 3.3, we can only quantify in the target space since
measures in parameter space of different architectures is
meanless. Specifically, we use L2 distance to measure the
similarity of logits output by the two models in Co-training

methods.
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As the model outputs probabilistic distributions, we can also

measure the similarity of models by KL Divergence.
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As shown in Figure 9, we can see that Co-training with a

shared backbone suffers the most from the homogenization

problem while different architecture and different input do-

mains allow more diverse model in Co-training, which is
consistent with the findings in Section 3.3.
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Figure 9. Demonstration of homogenization problem in Co-
training

C. Quatification of Diversity in Different Tech-
niques

After identifying the homogenization problem in Co-
training methods, we provide three techniques to alleviate
this problem. As discussed in Section 3.3, 5.2 and Appendix
B, we first show that the three techniques can reduce the ho-
mogenization (measured by prediction similarity) and then
empirically show the effectiveness of each technique indi-
vidually and combined. Here, we are curious about how
much diversity they each introduce, or more specifically,
to compare the diversity they bring to the Co-training. We
conjecture that with more diversity introduced, the empiri-
cal performance is better. The first and simplest approach
is to directly and qualitatively analyze the homogenization
plots. We can see that different architectures provide more
diverse predictions than different input domains as well as
Co-training, and Co-training (shared backbone). The sec-
ond approach can quantify the diversity brought by leverag-
ing one of the three metrics (agree rate, 12, or kld discussed
in Appendix B). Due to the stochastic nature of SGD opti-
mization, we can use an exponential moving average to esti-
mate the metrics. An alternative can be a weighted average
of the metrics at the last epoch over the whole dataset. How-
ever, we emphasize here that the three techniques tackle ho-
mogenization in three different perspectives in the training
process and they mutually benefit each other as shown in
the ablation study.

D. VOC PASCAL 2012 Results on ResNet101
and Comparison with SOTA

We provide comparison with ResNetl01 and
SegFormer-b3 on VOC PASCAL 2012 under the sec-
ond partition protocol mentioned in Section 5.1. For
Diverse Co-training, we use ResNetl101 and SegFormer-b3
as backbones and compare two variants (i.e. 2-cps and
3-cps) with other methods with ResNet101 in Table 7.
We further demonstrate the effectiveness of our Diverse
Co-training by showing that the improvement over current
SOTA methods with resolutions of 321 and 513. We
outperform the previous best consistently by more than

2% with resolution of 321 and around 1% with resolution
of 513. For instance, ours (3-cps) surpasses ST++ [91]
by 2.8%, 2.0% and 2.0% on 1/16, 1/8 and 1/4 partition
protocols respectively. We also compare with AEL [34],
U?PL[82] and PS-MT [50] which obtains the best previous
performance. We outperforms the best of them by 0.7%,
0.8% and 1.3% on 1/16, 1/8 and 1/4 partition protocols
respectively. It’s worth mentioning that, our performance
with resolution 321 already outperforms the previous SOTA
with resolution 512. The remarkable performance of our
Diverse Co-training illustrate the significance of diversity
in co-training.

1716 1/8 1/4
(662) (1323) (2646)

Sup Baseline | 321x321 | 67.5 704  73.7
CAC [43] 321x321 | 724 746 763
CTT* 321x321 | 73.7 75.1 -
ST++ [91] | 321x321 | 745 1763 76.6
ours (2-cps) | 321x321 | 77.6 783 78.7
ours (3-cps) | 321x321 | 773 78.0 78.6

Sup Baseline | 513x513 | 66.6 70.5 745
MT [72] 512x512 | 70.6  73.2  76.6
CCT[61] | 512x512 | 679 73.0 762
GCT [38] | 512x512 | 672 722 73.6

Method Resolution

CPS [12] 512x512 | 745 764 717
CutMix [82] | 512x512 | 72.6 727 743
3-CPS [20] | 512x512 | 75.8 78.0 79.0

DSBNi 769x769 - 74.1 778

ELN [42] 512x512 - 75.1  76.6
U?PL [82] | 513x513 | 744 716 787
PS-MT [50] | 512x512 | 75.5 782  78.7

AEL [34] 513x513 | 772 77.6  78.1

ours (2-cps)
ours (3-cps)

513x513 | 779 787 79.0

513x513 | 77.6  79.0  80.0

Table 7. Comparison with state-of-the-art methods with
ResNet101 on the Pascal VOC 2012 dataset. Labeled im-
ages are sampled from the blended training set. Results of MT,
CCT, GCT are from [12]. Results of CTT (denoted by *) is based
on DeepLabv2 and results of DSBN (denoted by %) is based on
Xception65

E. Detailed DCT Transform

We detailed the DCT trasform in this section. As illus-
trated in Figure 4, we first transform images to YCbCr color
space, consisting of one luma component (Y), represent-
ing the brightness, and two chroma components, Cb and
Cr, representing the color. Since the spatial resolution of
the Cb and Cr channel is reduced by a factor of two, we
upsample the original image by two to obtain the same res-
olution as Y channel. The image is then converted to the
frequency domain through DCT transform where each of
the three Y, Cb, and Cr channels is split into blocks of 8x8



pixels and transformed to DCT coefficients of 192 chan-
nels. The two-dimensional DCT coefficients at the same
frequency are grouped into one channel to form the three-
dimensional DCT cubes. After the DCT transform, we ob-
tain frequency domain input of 192 channels but with res-
olution downsampled by 8. Following [89], we select 64
channels (44, 10 and 10 channels each from Y, Cb and Cr
components respectively) close to upper-left squares from
the total 192 channels to reduce computation. We refer to
[89] for more details regarding the channel selections.

Since the number of channels for frequency domain is
different than the RGB domian (i.e. three), we have to mod-
ify the backbone to adapt it. We take ResNet [32] as an
example. To be as simple as possible and further reduce
training parameters and computation, we remove the stem
layers at the beginning of ResNet and modify the first con-
volution layer in the first ResLayer to have 64 in channels.

Notice that, the above DCT transform are not contradic-
tory to standard pre-processing techniques widely applied
to RGB images it takes RGB images as input, requiring
minimum modifications to the current pre-process pipeline
and model architecture. To maintain the strong-weak aug-
mentation proposed above, we first perform augmentations
on RGB images and then transform it to DCT for training
models on the frequency domain.

F. Comparison with Knowledge Distillation

As discussed in Section 5.4, Co-training is similar to
knowledge distillation (KD) in the sense that they both pos-
sess a teaching process, the difference lies in that the teacher
in KD is usually fixed and teaching is unidirectional while
Co-training does not possess the “teacher” and student”
concept and the model teaches each other mutually. To
demonstrate that the effectiveness of our method is not sim-
ply a knowledge transfer from one model to another but
a mutually beneficial process, we compare the knowledge
distillation with our method. Specifically, a Segfromer with
mit-b2 is trained alone and distills the knowledge to Fix-
match with ResNet50. From Table 8, we show knowl-
edge transfer do take effect improving the original Fix-
Match baseline by 3% 1%, which can be attributed to the
diverse inductive bias and the high-quality pseudo label in-
troduced by the transformer model. However, we show that
our method still outperforms knowledge distillation by 1%
consistently. This is because Co-training mutually bene-
fits the two models while KD fails to enjoy this benefit.
This can be demonstrated from Figure 3 that Co-training
improves the mit-b2 by 1% while KD uses a trained and
fixed model.

Method

FixMatch
FixMatch Distill
Ours (2-cps)

| Param | 1/32  1/16  1/8 1/4
40.5M | 70.28 7336 740 743
652M | 74.1 749 756 758
652M | 752 76.0 762 765

Table 8. Comparison with knowledge distillation. Labeled images

are sampled from the original high-quality training set.

G. Detail of Strong Augmentation

We provide a full list of strong augmentations applied in
Table 9.

CutMix is applied twice to the two different views in-
dividually. Notably, instead of batch-wise CutMix adopted
by CPS [12, 90], we use in-batch CutMix which leverages
the shuffled samples of the same batch to cutmix. We lever-
age the random cropped image directly as a weakly aug-
mented view to generate labels. Despite CutMix is applied
to each strong view individually, in-batch CutMix allows
us to generate cutmixed pseudo labels by forwarding each
model only once.

H. Number of Parameters

The objective of this section is to (1) demonstrate that
our improvement is not trivial by simply adding more pa-
rameters and (2) facilitate a fair comparison with the SOTA
method. We first report the parameters of the different ar-
chitectures used in Table 3.

Backbone Param

R50 2 x 40.5M = 81M

mit-b2 2 x 24.7TM =49 .4M
R50 & mit-b2 40.5M + 24.7M = 65.2M

ResNeSt50 2 X 42.3M = 84.6M

ResNeXt50 2 x 39.8M = 79.6M
R50 & ResNeST50 | 40.5M + 42.3M = 82.8M
R50 & ResNeXT50 | 40.5M + 39.8M = 80.3M

Table 10. We show the parameters of each architecture.

As per Table 10, our R50 & mit-b2 possess 20M param-
eters less than CNN variants such as R50 & ResNeSt50
and R50 & ResNeXt50 but still achieve better perfor-
mance. Then we compare FixMatch-Distill and FixMatch-
Ensemble which uses exactly the same or more parame-
ters than ours but a different learning paradigm. FixMatch-
Distill uses a trained Segformer-b2 to distill knowledge to
ResNet50 model as described in Appendix F. FixMatch-
Ensemble is an ensemble of two ResNet50 model is uses
20M parameters more than ours. As shown in the first sec-
tion of Table 11, our model outperforms both FixMatch-
Distill and FixMatch-Ensemble consistently by a large mar-
gin. This demonstrates that the improvements by our Di-
verse Co-training is not trivially by adding more parame-
ters. Finally, we also compare the parameters used in our



Weak Augmentation

Random Rescale

Resizes randomly the image by [0.5, 2.0].

Random Flip Flip the image horizontally with a probability of 0.5.
Random Crop Randomly crop a region from the image.
Strong Augmentation
Color Jitter Randomly jitter the color space of the image with a probability of 0.8.

Gaussian Blur
Random Grayscale
Cutmix

Blurs the image with a Gaussian kernel with a probability of 0.5.
Turn the image to greyscale with a probability of 0.2.
Cut a patch from one image and paste the patch to another image. We always apply Cutmix to every image.

Table 9. List of various image transformations.

method and the previous SOTA methods. CPS [12] uses two
models to perform Co-training while n-CPS (n=3) [21] uses
three. Although PS-MT [50] uses only one architecture,
they leverage two teachers (which are two different sets of
parameters) and one student which equals three times the
parameters of one model. U2PL [52] leverages the popular
teacher-student framework which also leverages two sets of
parameters. We show dominant performance with 20M pa-
rameters less which further demonstrates the effectiveness
of our Co-training.

Method | Param 1/32  1/16 1/8 1/4
FixMatch Ensemble 81.0M 73.0 743 756 759
FixMatch Distill 65.2M 741 749 75.6 758
CPS [12] 81.0M - 720 73.7 749
n-CPS (n=3) [21] 121.5M - 720 742 759
PS-MT [50] 121.5M - 728 757 764
UZPL* [82] 81M - 720 751 762
Ours (2-cps) 652M | 75.2 76.0 76.2 76.5

Table 11. Comparison of parameters and performance with differ-
ent learning paradigms and previous SOTA. Labeled images are
sampled from the original high-quality training set.

I. Visualization

Figure 10 visualizes some segmentation results on PAS-
CAL VOC 2012 validation set. First, we can observe the bet-
ter results obtained by co-training methods (i.e. (d) and (e))
as shown in the third and last row, where FixMatch is prone
to under-segmentation (classifies many foreground pixels as
background). Our Diverse Co-training, compared with co-
training baseline, can better segments the small objects that
FixMatch and co-training baseline tends to ignore (e.g. the
forth and fifth row). The FixMatch and co-training base-
line tends to ignore some foreground while our Diverse Co-
training does not, such as the visualization of the second
row. These visualization further demonstrate the remark-
able performance of Diverse Co-training and proves the ar-
gument that diversity matters significantly in co-training.
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Figure 10. Example qualitative results from PASCAL VOC 2012.
(a) RGB input; (b) ground truth; (c) FixMatch; (d) Co-training
baseline; (e) Diverse Co-training (ours). (c¢) and (d) use
DeepLabv3+ with ResNet50 as the segmentation network while
(e) uses DeepLabv3+ with ResNet50 and SegFormerb2 (with MLP
head) as the two segmentation networks.

J. Full Comparison with SOTA on Pascal VOC
2012

Due to limited space, we only compare the most recent
SOTA in Section 5.3. We provide a full comparison here.

K. Full Ablation Study

We further provide a table to show the importance and
performance gain of each component. As per table 14, we
can see that all component is effective when incorporate
into the holistic framework. The combination of diverse do-
mains and different architecture provides the best result of
75.21%, 75.85% and 76.23$ on 1/32, 1/16 and 1/8 labeled
data.



Method |Resolution 92 183 366 732 1464

ResNet50
Sup Baseline | 513x513 |39.1 51.3 60.3 659 71.0
PseudoSeg [103]| 512x512 |54.9 61.9 649 704 -
PC?Seg [100] | 512x512 [56.9 64.6 67.6 709 -
Ours (2-cps) 513x513 |71.8 74.5 77.6 78.6 79.8
Ours (3-cps) 513x513 |73.1 74.7 77.1 78.8 80.2
ResNet101
Sup Baseline | 321x321 |44.4 54.0 634 67.2 71.8
PseudoSeg [103]| 321x321 [57.6 65.5 69.1 72.4 732
PC?Seg [100] | 321x321 [57.0 66.3 69.8 73.1 74.2
ReCo [49] 321x321 [64.8 72.0 73.1 747 -
ST++ [91] 321x321 [65.2 71.0 74.6 773 79.1
ours (2-cps) 321x321 |74.8 77.6 79.5 80.3 81.7
ours (3-cps) 321x321 |75.4 76.8 79.6 80.4 81.6
Sup Baseline | 512x512 |42.3 56.6 64.2 68.1 72.0
MT [72] 512x512 [48.7 55.8 63.0 69.16 -
GCT [38] 512x512 [46.0 55.0 64.7 70.7 -
CTT* [83] 512x512 | 64 71.1 72.4 76.1 -
CPS[12] 512x512 |64.1 674 71.7 759 -
UZPL [82] 512x512 [68.0 69.2 73.7 76.2 179.5
PS-MT [50] 512x512 [65.8 69.6 76.6 78.4 80.0
ours (2-cps) 513x513 [76.2 76.6 80.2 80.8 81.9
ours (3-cps) 513x513 |75.7 77.7 80.1 80.9 82.0
Table 12. Full Comparison with state-of-the-art methods on the
Pascal dataset. Labeled images are from the original high-
quality training set. Results of CTT (denoted by *) is based on
DeeplabV?2.

1732 1/16  1/8 1/4
(331) (662) (1323) (2646)
Sup Baseline| 321x321 | 55.8 603 66.8 71.3

CAC[43] | 320x320 - 701 724 740
ST++[91] | 321x321 - 726 744 754

Ours (2-cps) | 321x321 |75.2 76.0 76.2 76.5

Ours (3-cps) | 321x321 | 749 764 763 76.6

Sup Baseline| 513x513 | 54.1 60.7 67.7 719

Method |Resolution

CutMix [22] | 512x512 | - 689 707 725
CCT[61] | 512x512 | - 652 709 734
GCT[3%] | 512x512 | - 641 705 735
CPS[12] | 512x512 | - 720 737 749

3-CPS[20] | 512x512 | - 720 742 759
ELN[42] | 512x512 | - - 732 746

PS-MT [50] | 512x512 | - 728 757 764

UZPL* [82] | 513x513 - 720 751 762

Ours (2-cps) | 513x513 | 75.2 762 77.0 715

Ours (3-cps) | 513x513 (747 763 712 717
Table 13. Full Comparison with state-of-the-art methods with
ResNet50 on the Pascal VOC 2012 dataset. Labeled images are
sampled from the blended training set. The result of U2 PL is re-
produced with the same setting as ours.




Table 14. Ablation study of different component combinations on PASCAL VOC datatset with ResNet50 and SegFormer-b2. The results
are obtained under 1/32, 1/16 and 1/8 partition protocols and the observations are consistent for other partition protocols. L* represents the
supervision loss on the labeled data. L“[ represents the pseudo supervision loss on the unlabeled data. SA (strong augmentation) denotes
strong-weak augmentation is used. Diff SA stands for different strong augmentation for each model. Diff domain means using RGB and
frequency domain to train separate models with cross supervision. Diff arch means different architectures are used to instantiate the two

models. Components PASCAL VOC

L° | £ | SA | diff SA | diff domain | diffarch | 1-32 | 1-16 | 1-8

7 55.78 | 60.3 | 66.79
v | v 65.66 | 71.28 | 73.77
|l v v 70.28 | 73.36 | 74.82
| v v 69.45 | 72.43 | 74.84
| v v 71.58 | 74.94 | 75.97
|lv | v v 71.07 | 74.09 | 74.98
|lv | v v 72.00 | 74.10 | 74.93
|lv | v v 74.89 | 75.82 | 76.08
|l v | v v v 7521 | 75.99 | 76.23




