
Supplementary Material

A. Experimental Details
A.1. Implementation of Similarity Metrics

This subsection lists approaches for computing mage-to-
image similarities and text-to-text similarities. In the image-
text-image and text-image-text tasks, the evaluation metrics
and distance metrics are closely related, i.e., the evaluation
metrics for one task serve as distance metrics for the other
task. Hence, we present them jointly in this section.
CLIP: The CLIP ViT-L/14 model3 is pre-trained on a 400M
text-image pair dataset. Specifically, we employ the outputs
from the visual projection layer with an embedding size of
768 for the CLIP image encoder. For the CLIP text encoder,
the outputs from the textual projection layer with an embed-
ding size of 512 are used.
DINO: The pretrained DINO ViT-B/8 model4 are used to
obtain the image embeddings. DINO has been trained on
the images dataset in a self-supervised way and has shown
superior performance on representation learning tasks. The
input image size is set to 384 and the output embedding size
to 768.
FID, IS: Following [46], the torch-fidelity library5 is used
to compute the fidelity scores of the generated images.
SBERT: We use Sentence-BERT6 with embedding size of
384 and take the [CLS] embeddings from the last trans-
former layer as the representation for the input text.
WMD: We use the open implementation of NLTK library7

to compute WMD between a source sentence and a target
sentence. Specifically, we use the glove-wiki-gigaword vec-
tor embeddings with 200 dimensions as the choice for the
WMD. Since WMD is a distance metric rather than a score
metric, we plot the y-axis in the reversed order to represent
that the higher the y, the better the text, as shown in the
second subfigure in Figure 3.

A.2. Details of Generation Models and Benchmarks
We use the NoCaps [1] validation set of 4500 images

and a subset of 2000 images from the COCO Karpathy test
split [27] to support the evaluation. For BLIP8, we use the
ViT-L model finetuned for the image captioning task. For
SD9, we use the weights sd-v1-4.ckpt and DDPM scheduler

3adapted from the public library https://huggingface.co/
docs/transformers/modeldoc/clip

4adapted from https://github.com/facebookresearch/
dino

5public implementation available from https://github.com/
toshas/torch-fidelity

6public implementation from https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2

7https://www.nltk.org/
8https://github.com/salesforce/BLIP
9https://github.com/huggingface/diffusers

with sampling steps of 50 and a guidance scale of 7.5. The
output image size is 512. The number of minimal words is
set to 5 and the maximum number of words is set to 30. We
set p=0.9 in the Top-p strategy.

B. Impact of Parameter of Top-p Sampling

p 0.1 0.2 0.3 0.4 0.5
CIDEr 111.8 111.2 110.0 107.2 103.4

p 0.6 0.7 0.8 0.9 0.95
CIDEr 96.2 89.7 83.1 78.7 69.2

Table 6. Impact of p on the Top-p sampling performance of BLIP
ViT-L.

Top-p sampling, which is also referred to as nucleus sam-
pling, is a text generation method that samples words from
a set of candidates whose cumulative probability exceeds a
specified threshold p. By varying p, we achieve a trade-off
between the diversity and accuracy of the generated text.
Broadly speaking, larger values of p result in more diverse
captions, whereas smaller values of p lead to less variable
yet more accurate captions for an input image.

Note that in Table 2 of the BLIP paper [35], the Top-p
sampling method is used to generate a diverse set of cap-
tions which are then utilized for bootstrapping the BLIP
model. However, the evaluation result in that row is ob-
tained by the beam search method. To examine the effect of
p, we report the performance of BLIP ViT-L on the NoCaps
dataset for image captioning, under different choices of p,
in Table 6.

C. Influence of Sampling Methods for Image
Captioning

Several sampling methods exist for generating text in the
image captioning model. Apart from the Top-p sampling
approach presented in the main text, we conduct a quantita-
tive evaluation of two different sampling strategies, includ-
ing Top-k [16] with k=10, and Tempered sampling [9, 39]
with T=0.7. Each sampling method serves as a baseline.
Table 7 verifies that our conclusion is solid across different
sampling methods.

D. Impact of Number of Candidates N
We investigate the effect of the number of candidates N

on our findings. We conduct experiments using the BLIP
ViT-L model on the NoCaps dataset for image captioning,
utilizing the Top-p sampling method. For image generation,
we use the SD model and the DDPM scheduler. We sample
N candidates for each input image or text in each experi-
ment. We compare our approach to the baseline method,
where a candidate is selected randomly.



Nocaps COCO
In-domain Near-domain Out-domain Overall Karpathy Test

Method CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE B@3 B@4 CIDEr SPICE
Top-k Sampling 79.5 13.2 78.4 12.4 83.4 11.7 79.6 12.4 39.7 28.1 108.4 20.9
Ours 84.3 13.5 81.6 12.8 91.6 12.7 84.0 12.9 40.1 28.7 111.6 21.5
Gain (%) +6.0 +2.3 +4.1 +3.2 +9.8 +8.5 +5.5 +4.0 +1.1 +2.3 +2.9 +2.9
Tempered Sampling 83.9 13.2 82.7 12.7 89.8 12.0 84.3 12.6 33.0 22.2 92.4 19.5
Ours 87.8 13.4 87.0 13.1 98.1 12.8 89.3 13.1 33.6 22.8 95.4 20.4
Gain (%) +4.6 +1.5 +5.2 +3.1 +9.2 +6.7 +5.9 +4.0 +1.8 +2.6 +3.2 +4.7

Table 7. Comparison of different sampling methods and our proposed method on Nocaps and COCO datasets. Our method outperforms
every sampling method on all metrics. The relative gain of our method compared to each sampling method is given in the last row in each
block. B@k: BLEU@k.

Figure 9. Evaluation of the choice of the number of sample candi-
dates.

Figure 9 depicts the impact of the number of candidates
on image-text-image (left) and text-image-text (right) tasks.
The figure (left) shows the image captioning score (y-axis)
for our approach and the baseline method, with the x-axis
representing the number of candidate captions for each in-
put image. As shown in the figure, the performance of
the baseline method remains consistent as it randomly sam-
ples captions with varying qualities. Conversely, our ap-
proach improves significantly after the number of captions
has reached around five. When the number of candidates is
limited, there may not be enough high-quality captions to
choose from, resulting in lower performance. Nevertheless,
our approach remains effective even in that stage. After
acquiring a reasonable number of candidates, our method
consistently outperforms the baseline method by a signifi-
cant margin. A similar conclusion can be inferred for the
text-image-text task, as demonstrated on the right side of
the figure.

E. Qualitative Results for Image and Text Gen-
eration

To reinforce the findings in Section 3, we provide ad-
ditional qualitative examples on the NoCaps dataset. The
annotations and explanations for each figure are included
in their respective captions. Figure 10 shows both positive
examples and negative examples for the image-text-image
task, whereas Figure 11 presents visualizations for the text-
image-text task. All results are obtained from BLIP ViT-L
and SD models.

F. Analysis of Different Image-to-Text and
Text-to-Image Generative Models

We conduct further experiments with different image
captioning and text-to-image models. Table 8 shows the
result of BLIP with a VAE-based image generative model
LAFITE for the image-text-image task, as well as SD with
BLIP-2 for the text-image-text task. In general, our finding,
that better reconstruction leads to better generation perfor-
mance, still holds. We find that SD performs better than
LAFITE, very likely due to its larger training data. When
coupled with BLIP-2, SD improved the performance upon
the baseline, but it performed worse than that in the case of
BLIP.

Text Generation
I2T T2I I-C N-C O-C E-C
Baseline 75.1 72.4 78.7 74.1
BLIP [35] SD [46] 77.3 78.3 88.8 80.3
BLIP [35] LAFITE [64] 75.4 76.2 82.9 77.4

Image Generation
T2I I2T CLIP# FID# IS"
Baseline 40.54 32.37 41.19 ± 2.91
SD [46] BLIP [35] 33.47 29.59 45.64 ± 2.40
SD [46] BLIP-2 [34] 39.41 31.34 42.34 ± 2.23

Table 8. Comparison of different combinations of generation mod-
els. We evaluate two image captioning models and two image
generation models on the NoCaps dataset. I2T: Image-to-text
model. T2I: Text-to-image model. I-C/N-C/O-C/E-C: In-/Near-
/Out-/Entire-domain CIDEr.

G. Implementations of Tokenizer Transforma-
tion

We elaborate on the gradient backpropagation process
between the output of BLIP and the input of SD, shown
on the left side of Figure 6. Our framework includes three
types of text tokenizers: BLIP utilizes the word-piece to-
kenizing method; BLIP-2 uses the byte-pair-encoding to-
kenizing method; SD employs the CLIP tokenizer, which
uses the word-level tokenizing strategy. One of the chal-
lenges we faced is to align the output token distributions
from BLIP with those from SD, allowing SD to interpret



the output of BLIP. To address this issue, we use these tok-
enization strategies to tokenize each sentence in the COCO
training set and learn a one-to-one hard-coded mapping
from a source token to a target token. Despite using dif-
ferent strategies, we found that these tokenizing methods
have a high ratio of overlapping between tokens. Specif-
ically, when applied to the COCO training set, more than
60% captions can be tokenized into the same set of tokens
for BLIP and SD. For unmatched tokens, we map them to
the most similar ones or to the [UNK] token. We visually
examined this method by generating images conditioned on
token distributions and found it to be practical. Addition-
ally, we remove the prefix tokens of BLIP, a photo of, and
add [BOS] and [EOS] tokens for SD.

H. Discussion on the Loss Function

Parameter Update While optimizing LIR for image cap-
tioning, both SD and BLIP are trained. LTG only updates
the parameters of BLIP. Likewise, both SD and BLIP are
trained when optimizing LTR, and only SD is updated by
LIG. The reasons for training SD in LIR are twofold. First,
SD needs to adapt to new distributions coming from BLIP.
As in the standard training, the input of BLIP is discrete to-
kens. Whereas in our approach, the input is token distribu-
tions. Second, SD could be improved because of additional
training data sampled from BLIP. In addition, since they are
refreshed at each iteration, one model is able to provide bet-
ter samples to train the other model throughout the training.

Connection to CycleGAN CycleGAN is a generative
model that learns bidirectional mappings from domain X
to domain Y , where X and Y are images. Its cyclic loss
ensures that the mapping between the input and output do-
mains is consistent, i.e., if we take an image from domain
X , pass it through the generator network to obtain an image
in domain Y , and then pass that image through the generator
network again to obtain an image in domain X , we should
obtain an image that is similar to the original image in do-
main X . Likewise, we aim to enforce consistent mapping
between the input and output domains, but we deal with two
distinct domains, i.e., image and language, which may re-
quire much more complex mapping. In addition, we also
optimize a single objective, similar to CycleGAN which is
trained on the weighted cyclic loss and adversarial loss. Cy-
cleGAN employs a hyperparameter � to control the rela-
tive importance of the cyclic loss to the adversarial loss, we
found that a similar weighting did not yield substantial dif-
ferences in performance in our work. Therefore we do not
adjust this hyperparameter in our approach.

Pseudo-Code The pseudo-code of our train framework is
presented in Algorithm 1.

Algorithm 1 Training Framework
Model UNet ✏ , SD’s Text Encoder ⇡, BLIP b✓
Input an image-text pair (x0,y)

1: repeat
# Image-Text-Image (BLIP ! SD)

2: x0,y ⇠ q(x0,y) . Sample an image-text pair from the
dataset

3: ŷ = b✓(x0, ỹ) . ŷ 2 RL⇥V : Output token distribution.
ỹ: (causal) masked text input

4: L1 = CE(y, ŷ) . CE: cross entropy loss
5: c = ⇡(ŷ) . Text encoder encodes BLIP’s output into

embeddings
6: t ⇠ Uniform({1, · · · , T}) . Sample a timestep for the

diffusion process
7: ✏ ⇠ N (0, I) . Sample noise for timestep t
8: xt =

p
↵tx0 +

p
1� ↵t✏ . Add noise to image

9: ✏̂ = ✏ (xt, t, c) . UNet predicts noise ✏̂ from the noisy
image xt

10: L2 = k✏� ✏̂k2
# Text-Image-Text (SD ! BLIP)

11: x0,y ⇠ q(x0,y) . Sample an image-text pair from the
dataset

12: c = ⇡(y) . Text encoder encodes input text into
embeddings

13: t ⇠ Uniform({1, · · · , T}) . Sample a timestep for the
diffusion process

14: ✏ ⇠ N (0, I) . Sample noise for timestep t
15: xt =

p
↵tx0 +

p
1� ↵t✏ . Add noise to image

16: ✏̂ = ✏ (xt, t, c) . UNet predicts noise ✏̂ from the noisy
image xt

17: L3 = k✏� ✏̂k2
18: x̂0 = 1p

↵t
(xt �

p
1� ↵t✏̂) . 1-step approximation of

x0

19: L4 = CE(y, b✓(x̂0, ỹ)) . ỹ: (causal) masked text input
20: Take gradient descent step on

BLIP: r✓(L1 + L2 + L3 + L4) = r✓(L1 + L2 + L4)
SD: r (L1 + L2 + L3 + L4) = r (L2 + L3 + L4)

21: until converged
22: return  , ✓

I. Ablation Study

Table 9 summarizes the different losses and weight-
freezing strategies, highlighting that improvement comes
from the proposed reconstruction loss. For simplicity, we
only list the effect of different settings on BLIP. Our de-
fault setting jointly optimizes both pipelines with both mod-
els trainable p1 : I

BLIP���! T(LTG)
SD��! I(LIR), and

p2 : T
SD��! I(LIG)

BLIP���! T(LTR). The third column
in the table shows the training signals that BLIP can receive
from the two pipelines under the specific setting. ”-” means
that loss has no effect as the model is frozen.



Weights Update Loss Function
BLIPp1 SDp1 SDp2 BLIPp2 LTG LIR LIG LTR Effect on BLIP Experiment CIDEr

X X X X X X X X p1: ground truth + reconstruction p2: augmentation Ours, Tab. 4 111.8
X ⇥ ⇥ ⇥ X ⇥ - - p1: ground truth Tab. 4 109.7
X ⇥ X ⇥ X X X X p1: ground truth + reconstruction Ablation 110.9
⇥ X ⇥ X - X - X p2: augmentation Ablation 110.2
X ⇥ ⇥ ⇥ ⇥ X - - p1: reconstruction Tab. 6 102.3

Table 9. Analysis of different training paradigms of loss terms and model frozen strategies.

J. Qualitative Results for Training Framework
We provide additional qualitative examples of image

captioning and image generation by our trained framework
in Figure 12 and Figure 13, respectively. Detailed annota-
tions and explanations can be found in the corresponding
figure captions.



Input Sample #1 Sample #2 Sample #3 Sample #4 Sample #5

Figure 10. Examples for the image-text-image task using Top-p sampling. The first column displays the input images, followed by the
generated caption and its corresponding generated image. We rank the generated text-image pairs based on the similarity of the images and
show the score of the caption below each text. In the first row, golf car in the first sample is a more accurate description than cart in the
fifth sample so that the first generated image is closer to the input image. Additionally, we show a few failed examples in the last two rows.



Input Sample #1 Sample #2 Sample #3 Sample #4 Sample #5

Figure 11. Examples for the text-image-text task. The first column shows the input text, followed by generated image and its corresponding
generated text. We rank the generated image-text pairs by the similarity of the text and show the score of the image in the box. As shown
in the first line, the image in the first sample represents the input text better than the image in the fifth sample, and the similarity of the
reconstructed text reflected this comparison. Further, we show some failed examples in the last two rows.



Figure 12. Qualitative results for image captioning. We compare the performance of our approach and BLIP ViT-B baseline. A ground
truth (GT) caption is given for each image. On average, our method provides more accurate descriptions for input images. The last two
rows show examples of our model performing worse than the baseline method.



Input Ours SD

Figure 13. Qualitative results for image generation. We compare the original SD model with our finetuned model. Each row displays
firstly the input text, followed by four images generated by our approach, and four images generated by the SD baseline. We can see that
compared with the baseline method, the image generated by our method better reflects the semantics of the input text.


