
In the Appendix we provide additional studies, implemen-
tation details, and qualitative results.

A. ImageNet Linear Evaluation
We show the results obtained on ImageNet with self-

supervised pre-training, via linear probing as well as Ima-
geNet foreground segmentation readout results in Table 12.
Linear probing. We follow SimSiam [14] setup. Specifi-
cally, given the pre-trained network, we train a supervised
linear classifier on frozen features from the ResNet’s global
average pooling layer. When training the linear classifier we
use a learning rate of lr = 0.02 with a cosine decay schedule
for 90 epochs, weight decay = 0, momentum = 0.9, a batch
size of 4096, and a LARS optimizer [75]. After training the
linear classifier, we evaluate it on the centered 224x224 crop
in the validation set.
Semantic segmentation readout. We also evaluate the pre-
trained backbone’s features on the dense prediction tasks on
ImageNet. We use the dataset from BigDatasetGAN [40],
which has object mask annotation on ImageNet 1k classes.
On average, each class has 5 annotated images and in to-
tal, it has 6,571 training images and 1,813 testing images.
We use the dataset to evaluate the pre-trained backbones on
foreground/background semantic segmentation performance.
We train an FCN [45] decoder with the frozen pre-trained
backbone’s features. The FCN readout network is trained us-
ing the SGD optimizer with lr = 0.01, momentum=0.9 and
weight decay=0.0005. We use poly learning rate schedule
with power=0.9 and train for 20k iterations. Both training
and testing images are center cropped with 256x256 res-
olution. For all methods, we use ResNet-50 as the image
backbone.
Results. Our method with feature distillation and the ADM
generative model [20], referred to as DT-feat.distil w/ ADM
achieves 63.9 Top1 accuracy with linear probing, outperform-
ing all generative pre-trained baselines, and also outperforms
competitive discriminative pre-train backbones SimCLR and
denseCL. However, we do not outperform the best perform-
ing contrastive based method BYOL in this task. Potential ex-
planation could be our pre-training focus on spatial features
instead of global discriminative features, which is important
for global classification tasks. Notably, our method achieves
79.3 mIoU on the ImageNet foreground/background segmen-
tation task (readout), outperforming all baselines, including
dense contrastive based method denseCL, showing the ad-
vantage of our method for downstream dense prediction
tasks.

B. BDD100K Pre-training
We show in-domain pre-training on BDD100K instance

segmentation task in the main text. Here we show in-domain
transfer learning results on two more tasks: semantic segmen-

Pre-training (ResNet-50) Eff. ImageNet Cls. ImageNet Seg.
epoch Linear Top1 Readout mIoU

Supervised - 79.3 74.1

Discriminative Pretrain:
SimCLR [12] 4000 62.5 73.9
denseCL [63] 1600 63.6 76.5
MocoV2 [13] 1600 67.5 76.3
SimSiam [14] 800 69.8 75.0
SwAV [7] 1200 70.4 76.1
BYOL [27] 1600 71.7 75.9
Generative Pretrain:
BiGAN [22] - 31.0 -
BigBiGAN [23] - 56.6 -
SparK [60] 1600 54.1 75.6
DT-feat.distil w/ ADM [20] *600 63.9 79.3

Table 12. ImageNet linear classificiation and semantic segmenta-
tion performance. Our method with ADM includes 400 epochs of
generative model pre-training and 200 epochs of feature distillation
onto the backbone.

tation and panoptic segmentation on BDD100K. We further
show transfer learning performance on Cityscapes.

In-domain transferring. Following the setup in the main
text, we investigate in-domain pre-training in the driving
dataset BDD100K. We pre-trained backbones of all meth-
ods from scratch using 70k unlabeled images in BDD100K
training set. Following the recommendation of [24], we pre-
trained contrastive based method BYOL and MIM based
method SparK with longer pre-training epochs. We then fine-
tune the pre-trained backbone on 7k labeled training dataset
on semantic segmentation and panoptic segmentation tasks.
In Table 13, we show DreamTeacher using StyleGAN2 and
ADM outperform BYOL and SparK pre-training on seman-
tic segmentation and panoptic segmentation task, achieving
60.3 mIoU and 21.8 PQ. However, it does not outperform
ImageNet supervised pre-training. One reason can be the un-
labelled driving dataset is small and lacks of rare objects and
concepts comparing to well-curated object-centred dataset
ImageNet.

Cityscapes transferring. Next, we evaluate pre-training on
BDD100K [77], and transfer to the Cityscapes [19] semantic
segmentation benchmark, which contains 2,975 training im-
ages. While both are autonomous driving datasets, they have
a domain gap, being captured with different cameras and in
different cities/continents. Table 14 shows that our method
outperforms all self-supervised baselines significantly. Com-
pared to the best-performing baseline, SparK, our perfor-
mance gain increases when the number of available down-
stream labeled examples decreases. We outperform SparK
by 1.8%, 2.7%, 4.0% and 4.7%, when fine-tuning on 2,975,
744, 374 and 100 labeled examples.

12



Pre-training (ResNet-50) PT Eff. Seg. Pan.
task epoch mIoU PQ

Supervised [77] - - 61.1 22.4

BYOL [27] CL 5000 58.4 20.9
SparK [58] MIM 2500 56.9 20.2
DT-feat.distil. w/ StyleGAN2 [37] GEN *900 59.7 21.5
DT-feat.distil. w/ ADM [20] GEN *900 60.3 21.8

Table 13. In-domain pre-training on BDD100k. We follow the rec-
ommendation of [24] to pre-train contrastive and masking based
self-supervised method with long schedule for small dataset like
BDD100k with 70k train images. For semantic segmentation, we
use UperNet [68] following official implementation from [77]. Re-
ported number is mean IoU at single sacle. For panoptic segmen-
tation, we use panoptic FPN [39], fine-tune for 36(3⇥) epochs,
reported number is Panoptic Quality (PQ).

Pre-training (RN-50) PT Eff. 1(2,975) 1/4(744) 1/8(372) 1/30(100)task epoch

IN sup init. - - 78.7 71.3 65.4 54.4

from stratch - - 70.9 41.8 40.7 36.7
BYOL [27] CL 5000 73.7 54.3 49.9 44.4
Spark [58] MIM 2500 75.7 61.2 56.0 45.3
DT-feat.distil (ADM) GEN *900 77.5 63.9 60.0 50.0

Table 14. Transfer learning: BDD100K to Cityscapes semantic segmen-
tation task. We pre-trained baselines including ours with unlabeled
BDD100K images, and finetuned the backbone on Cityscapes at
varying number of labels. Here, we show our method learned trans-
ferable features, and achieves the best results in all data portions.
Reported numbers are mean IoU, note that effective epochs of our
method includes 300 epochs generative model pre-training and 600
epochs feature distillation pre-training.

Pre-training (ResNet-50) FID (IN1k) Pre. Data ADE20k(mIoU)

DT-feat.distil. w/ BigGAN 25.3 Synthetic 40.8
DT-feat.distil. w/ ICGAN 17.0 Synthetic 41.2
DT-feat.distil. w/ ADM 26.2 Real 42.5

Table 15. Ablation study with different unconditional generative
models on ImageNet using DreamTeacher.

C. Generative Models Analysis
Here we include additional analysis on the effect of using

different generative models with DreamTeacher. In Table 15,
we show DreamTeacher with different generative models
on ImageNet. For GAN-based models, ICGAN has better
generative modelling performance compared to BigGAN
in terms of FID (17.0 and 25.3). The backbone pre-trained
with ICGAN also has better transfer learning performance in
ADE20K (41.2 and 40.8). This observation is in line with the
empirical results shown in BigBiGAN paper, which found
that generative models with lower FID obtain higher Ima-
geNet classification accuracy. For GANs, we use synthesized
data to pre-train the image backbone. For diffusion models,
we use encoded data (real images, see Sec. 3.1 main paper),
which makes FID scores of generated data less informative.

In fact, DreamTeacher with diffusion models performs better
in transfer learning, despite ADM’s lower generation FID.

D. Architecture
Here we provide additional implementation details about

our method’s architecture.

D.1. Implementation: Feature Regressors
Our Feature Regressor is implemented as a Feature Pyra-

mid Network (FPN) [42] with additional Pyramid Pooling
Module (PPM) [83]. We use pool scale at 1,2,3,6. We add
batch normalization and ReLU activation for both the lateral
connection and the bottom-up convolution blocks in FPN.
We use feature channel size 256. We also add 1x1 conv layer
at the end of each level to map the output feature channel to
the generator’s feature channel.

D.2. Implementation: Feature Interpreter
Feature Interpreter is implemented as a series of Feature

Fuse layer to map and fuse generator’s features into a logit
map. Feature Fuse Layer is implemented by a block of 1x1
conv, bilinear upsampling, concatenation, and Depth-wise
Separable Convolution [17]. We applied Group Norm [67]
with group number 32 and Swish Activation [49] in-between
blocks. The feature dimension is 256. We also apply dropout
with rate 0.1 before the 1x1 conv mapping to the output
logits.

E. ImageNet Benchmarks
E.1. Implementation: generative models

For GAN based generative models, we use pre-trained
unconditional BigGAN [5] from this repository1, ICGAN [9]
from this repository2. For diffusion based generative model,
we use ADM without classifier guidance, pre-trained with
resolution 256x256 from this repository 3. Please also refer
to Table 16 for the hyperparameters used in training the
diffusion model on ImageNet.

E.2. Implementation: pre-training
We pre-trained ResNet-50 backbone by diffusing images

for 150 steps and running a single denoising step to extract
the ADM’s UNet decoder features at blocks 3,6,9, and 12.
We use the LAMB [76] optimizer with batch size of 2048 and
lr = 4e�3 with cosine decay learning rate schedule and pre-
trained for 200 epochs on the ImageNet training set without
class labels. We center crop images into resolution 256x256
and only apply horizontal flipping as the data augmentation.
Please see Table 17 for other hyperparameters.

1https://github.com/lukemelas/pytorch-pretrained-gans
2https://github.com/facebookresearch/ic gan
3https://github.com/openai/guided-diffusion

13



LSUN FFHQ ImagetNet BDD100K
resolution 256x256 256x256 256x256 128x256
diffusion steps 1000 1000 1000 1000
noise Schedule linear linear linear linear
channels 256 256 256 128
depth 2 2 2 2
channels multiple 1,1,2,2,4,4 1,1,2,2,4,4 1,1,2,2,4,4 1,1,2,2,3,4
heads Channels 64 64 64 32
attention resolution 32,16,8 32,16,8 32,16,8 16,8
dropout 0.1 0.1 0.0 0.0
batch size 256 256 256 256
learning rate 1e-4 1e-4 1e-4 1e-4

Table 16. Hyperparameters for diffusion models used in the paper.

E.3. Implementation: downstream tasks

ImageNet: classification fine-tuning. For ResNet50, we fol-
low [58] to use the latest open-source ResNet A2 schedule
from [65]. For ConvNeXt-B, we use the official implementa-
tion. We did not tune the hyper-parameters from [58]. Please
refer to SparK official github repo4 for the hyper-parameters.

ADE20K: semantic segmentation. We use UperNet imple-
mented in MMSegmentation for training ADE20K seman-
tic segmentation task. We use the default hyperparameters
from MMSegmentation and train for 160K iterations. We
use the same hyperparameters for both the baselines and
our methods. After finetuning, we evaluate the performance
on ADE20K validation set without using multi-scale flip
augmentation.

MSCOCO: instance segmentation. For ResNet-50, we
follow [58] to use Mask R-CNN with R50-FPN backbone
implemented in Detectron25 for MSCOCO instance segmen-
tation task. We use the same configuration as in SparK [58] to
finetune the pre-trained backbone for 12 epochs (1⇥ sched-
ule) or 24 epochs (2⇥) and evaluate performance on the
MSCOCO 2017 validation set. For ConvNeXt-B, we follow
the configuration of iBOT [85] to use Cascade Mask R-CNN,
fine-tune for 12 epochs. Following the convention, we do not
use multi-scale testing, large-scale jittering augmentation, or
soft-NMS in all our COCO experiments.

BDD100K: instance segmentation. We use Mask R-CNN
with R50-FPN backbone implemented in MMDetection for
BDD100K instance segmentation task. We use the official
data processing script from this repository6 and finetuned pre-
trained backbone with 36 epochs (3x schedule) and evaluate
performance on BDD100K validation set.

4https://github.com/keyu-tian/SparK/
5https://github.com/facebookresearch/detectron2
6https://github.com/SysCV/bdd100k-models/tree/main/ins seg

F. BDD100K Benchmarks
F.1. Implementation: Generative Models
StyleGAN2. We resize BDD100K images from the original
resolution 720x1280 to 512x1024 when training the GAN.
We use the default configuration from [37] without adaptive
augmentation. We empirically found that turning off path
length regularization and style mixing loss improves data
sample quality on the BDD100k driving scenes. We train
the network with batch size 32 and gamma = 10.0 until
convergence.
Diffusion Models. We train our own diffusion model on
BDD100K, and we summarize training hyperparameters
in table 16. We resize BDD100K images from the original
resolution 720x1280 to 128x256 resolution. We use diffusion
model architecture builds on the U-Net by [20], and we use
linear noise schedule from 1e � 4 to 2e � 2.

F.2. Implementation: Pre-training
When DreamTeacher pre-training using the StyleGAN2

generator, we use resolution 512x1024. We use resolution
128x256 for the ADM generator, same resolution as in the
generative model training. We use AdamW [46] optimizer
with learning rate lr = 4e � 3 and cosine decay learning
schedule to train 600 epochs. Note that we only use horizon-
tal flip as the augmentation during pre-training. Please see
Table 17 for information about the hyperparameters.

F.3. Implementation: Downstream Tasks
For all three tasks, we use the official data split and dataset

configuration from the official BDD100K repository 7.
Semantic segmentation. We use UperNet [68] implemented
in MMSegmentation 8 for evaluating the semantic segmenta-
tion task on BDD100K. We train UperNet with the pre-
trained ResNet-50 backbone using SGD optimizer with
lr = 0.01, momentum=0.9, weight decay=0.0005, and poly
learning rate schedule with power=0.9 for 80k iterations. We
7https://github.com/SysCV/bdd100k-models
8https://github.com/open-mmlab/mmsegmentation

14



LSUN FFHQ ImagetNet BDD100K
resolution 256x256 256x256 256x256 128x256/512x1024
noise steps 50 50 150 50
optimizer AdamW AdamW LAMB AdamW
base learning rate 4e-3 4e-3 4e-3 4e-3
weight decay 0.05 0.05 0.05 0.05
optimizer momentum �1, �2 = 0.9, 0.95 �1, �2 = 0.9, 0.95 �1, �2 = 0.9, 0.95 �1, �2 = 0.9, 0.95
batch size 256 256 2048 256
training epochs 100 100 200 600
learning rate schedule cosine decay cosine decay cosine decay cosine decay
warmup epochs 20 20 30 30
augmentation horizontal flip horizontal flip horizontal flip horizontal flip

Table 17. Hyperparameters for pre-training the image backbones.

use the same training hyperparameters for both the baseline
models and our models. After finetuning, we evaluate the
model on BDD100K validation set without multi-scale flip
test-time augmentation.

Instance segmentation. We use Mask R-CNN [30] with
R50-FPN backbone implemented in MMDetection9 for eval-
uating the instance segmentation task on BDD100K. We
only use the pre-trained weights of ResNet-50 during fine-
tuning and the rest of the networks are randomly initialized.
We use SGD optimizer with lr = 0.02, momentum=0.9, and
weight decay=0.0001 to train Mask R-CNN for 36 epochs
(3x schedule). We use the same training hyperparameters for
both the baseline models and our models.

Panoptic segmentation. We use PanopticFPN [39] with
R50-FPN backbone implemented in MMDetection for eval-
uating panoptic segmentation task on BDD100K. We only
use the pre-trained weights of ResNet-50 during finetuning
and the rest of the networks are randomly initialized. We
use the SGD optimizer with lr = 0.02, momentum=0.9, and
weight decay=0.0001 to train PanopticFPN for 36 epochs
(3x schedule). We use the same training hyperparameters for
both the baseline models and our models.

Cityscapes transfer learning. In this experiment, both the
baselines and our method use ResNet-50 backbone pre-
trained on 70k unlabeled images from the BDD100K training
set. After pre-training, we finetuned the backbone with UPer-
Net [68] for semantic segmentation tasks in Cityscapes. We
follow the public split [16] to split 2,975 training images into
1/4, 1/8, and 1/30 subsets. We use MMSegmentation to train
UperNet with 80k iterations for the full set and 20k iterations
for the subsets. We use the default hyperparameters for all
the baselines and our method. After finetuning, the model is
evaluated on the official validation set (5,000 images).

9https://github.com/open-mmlab/mmdetection

G. Label-Efficient Benchmarks
G.1. Implementation: generative models

For LSUN cat, horse and bedroom dataset, we use pre-
trained ADM models from the guided-diffusion models’
repository10. For FFHQ, we use pre-trained model from this
repository 11, following DDPM-seg [32]. Please see Table 16
for the hyperparmeters used in training the diffusion models.

G.2. Implementation: Feature Interpreter

We train the feature interpreter by first diffusing the real
images with 50 time steps, and then extract the ADM’s
features by running one step of denoising. We use ADM’s
UNet decoder features at block 3,6,9, and 12. We then train
the feature interpreter branch with AdamW optimizer with
lr = 4e�3, weight decay 0.05, �1, �2 = 0.9, 0.95, warm-up
epochs 20 and train for 100 epochs. We only use horizontal
flip when training the feature interpreter.

G.3. Implementation: pre-training

We use the AdamW optimizer with learning rate lr =
4e�3 and cosine decay learning schedule to train 100 epochs.
Please see Table 17 for hyperparmeters for different datasets.
Note that we only use horizontal flipping as data augmenta-
tion during pre-training.

G.4. Implementation: downstream tasks

We use UperNet implemented in MMSegmentation for
semantic segmentation tasks. We use the default hyperpa-
rameters in MMSegmentation. For all four tasks, we train
UperNet using 20k iteration schedule. For feature distilla-
tion, only the backbone is initialized from pre-trained weight,
and the rest are randomly initialized. For mix-distillation,
we initialize the backbone as well as the UperNet with our
pre-trained weights.

10https://github.com/openai/guided-diffusion
11https://github.com/yandex-research/ddpm-segmentation

15



In
st

an
ce

Se
g.

Se
m

an
tic

Se
g.

Image denseCL IN-1k-1M pre-trained DT-feat.distil. BDD100K pre-trained DT-feat.distil. IN-1k-1M pre-trained

Figure 6. Qualitative results on BDD100k Inst./Sem. Seg. Compared with denseCL, our method pre-trained on ImagetNet predicts the correct box on
pedestrians and occluded cars, and the mask boundaries are clearer. On semantic segmentation (second row), our prediction segments traffic signs and thin
objects like poles. We blur pedestrian faces in the figure, while the methods make predictions on original images.

H. Visualization

We first provide qualitative comparison of in-
stance/sementic segmentation in BDD100K with baseline
and then show visualization of ADM denoising network fea-
tures at different resolution of driving scenes in BDD100K
and feature activation maps of a pre-trained ResNet50
backbone using DreamTeacher on ImageNet1k. We then
show semantic segmentation results on FFHQ, LSUN-cat,
horse and bedroom. The backbone is ConvNX-b pre-trained
with our mix-distillation method. We also show semantic,
instance and panoptic segmentation results of our method on
BDD100K. Note that results of all three tasks are pre-trained
using our DreamTeacher feature distillation method on
ResNet-50 backbone. We show results on pre-training on
BDD100K in-domain data solely and ImageNet-1k-1M as
general domain data.

H.1. Qualitative Comparison

In Figure 6, we show qualitative results on BDD100k in-
stance/semantic segmentation task. Comparing to denseCL,
our DreamTeacher pre-training method performs better at
small/thin objects like traffic signs and poles when fine-tuned
on downstream tasks.

H.2. Feature Activation Maps

In Figure 7, we show feature activation maps at different
resolution blocks and different noise steps from ADM [20]
pre-trained on BDD100k without classifier guidance. We
visualize multi-scale features at different resolution blocks,
showing features in lower resolution focus on structures, and
focus on parts in higher resolution. In Figure 8, we show
feature activation maps on ResNet50 backbone pre-trained
with DreamTeacher, the backbone learns coarse features at
lower level layers and finer features at higher level layers.

Real Images Res 1/32 Res 1/16 Res 1/8 Res 1/4

Figure 7. ADM feature visualization (BDD100k). BDD100k image
is first diffused by 50 steps and we run one denoising step of the
ADM model to extract the feature. We see that features in the low
resolution block focus on scene layouts and objects, and in higher
resolution, they focus on parts like car wheels, and traffic lights.

Figure 8. DreamTeacher pre-trained ResNet50 backbone feature ac-
tivation maps on ImageNet images. From left to right, we show the
image and features at 1/32, 1/16, and 1/8 input resolution.

H.3. Label-Efficient Semantic Segmentation

In Figure 9, we show semantic segmentation results on
FFHQ unlabeled images. In Figure 10, we show semantic
segmentation results on LSUN-bedroom unlabeled images.
In Figure 11, we show semantic segmentation results on
LSUN-cat unlabeled images. In Figure 12, we show seman-
tic segmentation results on LSUN-horse unlabeled images.
From the visulization, our method is robust to cat in different
pose, multi objects occurs in the same images (horse/cat).

16



H.4. BDD100K: semantic segmentation
In Figure 13, we show semantic segmentation results on

BDD100K, pre-trained by DreamTeacher feature distillation
on BDD100K unlabeled dataset. And in figure 14, we show
results pre-trained on ImageNet unlabeled dataset with our
method. Comparing to BDD100K pre-trained, ImageNet pre-
trained method works better with rare and small objects like
rider and traffic lights.

H.5. BDD100K: instance segmentation
In Figure 15, we show instance segmentation results on

BDD100K, pre-trained by DreamTeacher feature distillation
on BDD100K unlabeled dataset. and in figure 16, we show
instance segmentation results on BDD100 on ImageNet un-
labeled dataset. As a comparison, model pre-trained on Ima-
geNet detect and segment small objects better.

H.6. BDD100K: panoptic segmentation
In Figure 17, we show panoptic segmentation results on

BDD100K, pre-trained by DreamTeacher feature distillation
on BDD100K unlabeled dataset. And in figure 18, we show
panoptic segmentation results on BDD100K, pre-trained on
ImageNet unlabeled dataset. Note that model pre-trained
with BDD100K performs well on things class like road and
tree etc, but model pre-trained on ImageNet gets clearer
boundary, especially for small objects.

17



Figure 9. Semantic segmentation: FFHQ with 34 classes. Qualitative results of our ConvNX-B model pre-trained with DreamTeacher-
feature distillation on FFHQ unlabelled images.

18



Figure 10. Semantic segmentation: LSUN-bedroom with 28 classes. Qualitative results of our ConvNX-B model pre-trained with
DreamTeacher-feature distillation on LSUN-bedroom unlabelled images.

19



Figure 11. Semantic segmentation: LSUN-cat with 15 classes. Qualitative results of our ConvNX-B model pre-trained with DreamTeacher-
feature distillation on LSUN-cat unlabelled images.

20



Figure 12. Semantic segmentation: LSUN-horse with 21 classes. Qualitative results of our ConvNX-B model pre-trained with
DreamTeacher-feature distillation on LSUN-horse unlabelled images.

21



Figure 13. BDD100K semantic segmentation visualization: pre-trained with DreamTeacher feature distillation on BDD100K. The
backbone is resnet-50, finetuned using UperNet.

22



Figure 14. BDD100K semantic segmentation visualization: pre-trained with DreamTeacher feature distillation on IN1k-1M. The
backbone is resnet-50, finetuned using UperNet. Only the backbone weight is pre-trained, other part of the networks are randomly initialized.

23



Figure 15. BDD100K instance segmentation visualization: pre-trained with DreamTeacher feature distillation on BDD100K. The
backbone is resnet-50, finetuned using Mask R-CNN. Only the backbone weight is pre-trained, other part of the networks are randomly
initialized.

24



Figure 16. BDD100K instance segmentation visualization: pre-trained with DreamTeacher feature distillation on IN1k-1M. The
backbone is resnet-50, finetuned using Mask R-CNN. Only the backbone weight is pre-trained, other part of the networks are randomly
initialized.

25



Figure 17. BDD100K panoptic segmentation visualization: pre-trained with DreamTeacher feature distillation on BDD100k. The
backbone is resnet-50, finetuned using PanopticFPN. Only the backbone weight is pre-trained, other part of the networks are randomly
initialized.

26



Figure 18. BDD100K panoptic segmentation visualization: pre-trained with DreamTeacher feature distillation on IN1k-1M. The
backbone is resnet-50, finetuned using PanopticFPN. Only the backbone weight is pre-trained, other part of the networks are randomly
initialized.

27


	. Introduction
	. Related Work
	. DreamTeacher Framework
	. Unsupervised Representation Learning
	. Label-Guided Representation Learning

	. Experiments
	. ImageNet Evaluation and Transfer
	. In-domain Pre-training
	. Ablation Studies

	. Conclusion
	. ImageNet Linear Evaluation
	. BDD100K Pre-training
	. Generative Models Analysis
	. Architecture
	. Implementation: Feature Regressors
	. Implementation: Feature Interpreter

	. ImageNet Benchmarks
	. Implementation: generative models
	. Implementation: pre-training
	. Implementation: downstream tasks

	. BDD100K Benchmarks
	. Implementation: Generative Models
	. Implementation: Pre-training
	. Implementation: Downstream Tasks

	. Label-Efficient Benchmarks
	. Implementation: generative models
	. Implementation: Feature Interpreter
	. Implementation: pre-training
	. Implementation: downstream tasks

	. Visualization
	. Qualitative Comparison
	. Feature Activation Maps
	. Label-Efficient Semantic Segmentation
	. BDD100K: semantic segmentation
	. BDD100K: instance segmentation
	. BDD100K: panoptic segmentation


