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1. Validation on Real-World Data

To validate the ability of our method to detect symme-
tries in real-world scenarios, we test our method on recon-
structed or raw scanned models. The visualization results
are displayed in Figure 1, the left is a sofa reconstructed
by NeuS [7], and the right is a raw scanned chair in Scan-
Net [3]. Despite the presence of artifacts on the sofa and
the chair is incomplete (the right leg connection is missing),
and the shapes are not completely symmetric, our method
can detect acceptable symmetries, demonstrating its effec-
tiveness and robustness.

(a) (b)

Figure 1: Results on reconstructed or raw scanned models.
(a) a sofa reconstructed by NeuS [7], (b) a raw scanned chair
in ScanNet [3].

2. Rotational Symmetry Reasoning

As Chertok et al. proposed in their 2D image symmetry
detection work [2], two distinct reflection transforms can
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determine a unique corresponding rotational transform. For
a 3D shape with multiple reflective symmetries detected,
the shape might be rotational symmetric. To eliminate de-
tecting excessive planar reflective symmetries for rotational
symmetric shapes, we can recover the corresponding ro-
tational symmetry from detected symmetry planes. To be
specific, for each pair of distinct reflective transforms from
detected planar reflective symmetries i and j: Ti

ref and
Tj

ref , the corresponding rotational transform can be recov-
ered as Tij

rot = Ti
ref · T

j
ref . Figure 2 provides examples

for rotational symmetry reasoning, the left one is an octa-
hedron with 13 rotation axes and the right are four shapes
sharing continuous rotational symmetry, the recovered ro-
tational axes are highlighted in red for visualization. Note
that all rotational axes of octahedron are reasoned because
our method is able to detect an arbitrary number of reflective
symmetry planes, showing the effectiveness of the proposed
approach.

Figure 2: Our method can detect reasonable rotational sym-
metries.



Method PCA OBB Kazhdan
et.al.

Martinet
et.al.

Mitra et.al. PRST PRST with
GEDT

Korman
et.al.

PRS-Net Ours

GTE(×10−2) 2.41 1.24 0.17 13.6 52.1 4.42 3.97 19.2 0.11 0.09

Table 1: The GTE (×10−2) measured with different methods on ShapeNet [1].

Figure 3: Comparison of shape completion. The symmetry parts are mirrored by the detected symmetry planes and are
highlighted in light blue. The Chamfer distances (×10−4) between the completed point cloud and ground truth point cloud
are displayed underneath the completion results, our method achieves the lowest Chamfer distance. Please zoom in to see
more details.

3. Application to Shape Completion
As useful high-level information, symmetry can be use-

ful in a wide variety of applications. We apply symmetry
detection to shape completion in this case. After obtaining
the symmetries of an incomplete shape, we can reasonably
restore its missing parts. Figure 3 shows a comparison of
our method against baselines, the input incomplete point
cloud is a randomly rotated airplane (for better visualiza-
tion, we rotate it back in Figure 3), the symmetry parts are
mirrored according to the detected symmetry planes and are
highlighted in light blue. The Chamfer distances (×10−4)
between the completed point cloud and ground truth point
cloud of different methods are displayed on the bottom as
well, our method achieve the lowest Chamfer distance.

4. Additional Results
4.1. Quantitative results

Following PRS-Net [5], GTE (Ground Truth Error) is
also adopted as a metric, which measures how close the pre-
dicted symmetry is to the corresponding ground truth. Due
to the directional ambiguity of a plane, the error is com-
puted as:

GTE(S, Sgt) = min(MSE(S, Sgt),MSE(−S, Sgt)), (1)

where Sgt is the ground truth symmetry of S and MSE is
the mean squared error. Quantitative results compared with
baseline methods are listed in Table 1, which shows that our
method outperforms other methods in GTE as well.

4.2. Qualitative results

Additional qualitative reflective symmetry detection re-
sults in ShapeNet compared with different methods are

shown in Fig. 4. Our method is able to detect all valid pla-
nar reflective symmetries, while other methods detect re-
dundant or inaccurate planes, showing the effectiveness of
our method. In Figs. 5, 6, 7, additional visualization re-
sults in 12 categories of ShapeNet are displayed to further
demonstrate the effectiveness to detect symmetries for dif-
ferent shapes.

4.3. Comparison with Vector Neurons

We evaluate our method compared with the novel Vec-
tor Neurons (VN) [4] that can produce rotation invariant
features from point clouds on MVP [6]. We replace the
encoder in our framework with VN-PointNet for feature ex-
traction. The method of Vector Neurons [4] gets 10.17 for
SDE and 12.54 for SDE⋆, where SDE⋆ measures the per-
formance when the incomplete shape is randomly rotated.
Apart from that the extracted features of our method per-
form better than Vector Neurons [4] (see Table 3 in the
main paper), benefiting from the end-to-end unsupervised
framework we proposed, the performance of our framework
with the encoder replaced by VN-PointNet still outperforms
the previous state-of-the-arts by a large margin, e.g., PRS-
Net [5] that achieves 34.10 for SDE and 46.13 for SDE⋆

respectively.
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Figure 4: Qualitative reflective symmetry detection results in ShapeNet comparing different methods.
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(a) Cap

(b) Airplane

(c) Basket

(d) Bathtub

Figure 5: Qualitative reflective symmetry detection results in ShapeNet, including (a) Cap, (b) Airplane, (c) Basket, (d)
Bathhub.

4



(a) Bed

(b) Bench

(c) Bird House

(d) Book Shelf

Figure 6: Qualitative reflective symmetry detection results in ShapeNet, including (a) Bed, (b) Bench, (c) Bird House, (d)
Book Shelf.
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(a) Camera

(b) Car

(c) Chair

(d) Earphone

Figure 7: Qualitative reflective symmetry detection results in ShapeNet, including (a) Camera, (b) Car, (c) Chair, (d) Ear-
phone.
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