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A. Compared Methods
In this paper, we evaluate the efficacy of our proposed

method by applying it to three distinct transferability pre-
diction metrics, i.e., LogME [17], GBC [13], and SFDA
[14]. To enhance understanding of their underlying princi-
ples and mechanisms, we provide detailed descriptions of
these metrics in this section.

LogME [17]. LogME is an evidence-based metric, which
uses the marginal evidence to measure the transferability.
Unlike the approach in [2], LogME does not directly min-
imize the Gaussian-based log-likelihood. Instead, it adopts
Bayesian averaging to address the overfitting problem:

p(y|F ) =

∫
p(w)p(y|F,w)dw,

where p(w) and p(y|F,w) are modeled as two Gaussian
distributions specified by two positive parameters. p(y|F )
denotes the probability density of the compatibility between
features F and labels y, which is based on the marginal ev-
idence of the target task.

SFDA [14]. SFDA is a class-discrimination based met-
ric, which utilizes a Fisher Discriminant Analysis (FDA)
approach and propose ConfMix to produce hard-negative
samples in a self-challenge manner. The aim of SFDA is
to find a transformation U to maximize between scatter of
classes and minimize within scatter of each class:

U = arg max
U

=
|U⊤SBU |

|U⊤(1− λ)SW + λI)U |
,

where SB and SB are the between and within class scatter
matrix. The solution can be solved with a close-form so-
lution and then SFDA acquires transformed feature {x̂n =

Un}N
n=1 . Finally, SFDA adopts Bayes theorem to obtain the
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score function δc(x̂n) and use the probability likelihood to
measure the transferability score.

δc(x̂n) = x̂nUU⊤µc −
1

2
µcUU⊤µc + logqc.

GBC [13]. GBC is a class-separation based metric that
employs the Gaussian Bhattacharyya Coefficient (GBC) to
estimate the pairwise class separability.

GBC = −
∑
i ̸=j

exp(−BC(i, j))

BC(i, j) =
1

8
(µci − µcj )

⊤Σ⊤(µci − µcj )

+
1

2
ln(

|Σ|√
|Σci ||Σcj |

),

where µ and Σ represent the distribution mean and variance
of the corresponding class, and coefficient BC(i, j) denotes
the overlaps between classes i and j. The final transferabil-
ity score is based on the overlaps of all classes by summing
up the pairwise negative exponential coefficients.

B. Implementation Details
The implementation details are presented in the section

of experiment setup and ablation study. Additionally, we
present supplementary studies in this section.

Hyper-parameter k. The hyper-parameter k denotes the
elastic coefficient of the repulsive-based elastic force and a
higher value of k yields a stronger force, as shown in Sec-
tion 3.3. Since that the elastic hyper-parameter k is coupled
with the radius coefficient λ, we set the default value of the
hyper-parameter k to 1.0 and adjust λ in our experiments
accordingly. As suggested by [14], we further conduct a
grid search on k for optimal performance using values of
[0.6, 0.8, 1.0, 1.2, 1.5, 2.0] and the results are presented in
Table 1.



Table 1. The supplementary experiment results of different transferability metrics on various self-supervised learning models under grid-
search of hyper-parameter k, showing that our method still has further potential with fine-grained tuning on hyper-parameter.

Self-Supervised Reference Aircraft Caltech101 Cars Cifar10 Cifar100 Flowers VOC Pets Food DTD
NLEEP [12] CVPR’21 -0.029 0.525 0.486 -0.044 0.276 0.534 -0.101 0.792 0574 0.641
PARC [3] NIPS’21 -0.03 0.196 0.424 0.147 -0.136 0.622 0.618 0.496 0.359 0.447
LogME [17] ICML’21 0.223 0.051 0.375 0.295 -0.008 0.604 0.158 0.684 0.570 0.627
LogME+Ours this paper 0.509 0.611 0.624 0.633 0.668 0.728 0.781 0.795 0.737 0.837
SFDA [14] ECCV’22 0.254 0.523 0.515 0.619 0.548 0.773 0.568 0.586 0.685 0.749
SFDA+Ours this paper 0.505 0.661 0.666 0.741 0.744 0.798 0.613 0.592 0.689 0.907
GBC [13] CVPR’22 0.048 -0.18 0.424 0.008 -0.249 0.532 -0.041 0.655 0.268 0.05
GBC+Ours this paper 0.549 0.340 0.629 0.149 0.431 0.779 0.552 0.758 0.672 0.611

Figure 1. The t-SNE visualization of dynamic feature representation achieved through fine-tuning.

Feature Pre-processing. In our implementation, we
adopt a pre-processing step to analyze the motion in the
embedding space. Specifically, downstream features are
normalized with ImageNet feature mean and standard de-
viation, based on a subset of 50,000 images. To evaluate
the impact of normalization on the modeling process, we
present our findings in Fig 2. Through the normalization,
the feature values in each dimension are largely normal-
ized in a certain region (e.g., [−3σ, 3σ] due to the prop-
erty of Gaussian distribution), creating a suitable condition
for physical modeling. We discovered that the normaliza-
tion can prevent the occurrence of highly imbalanced di-
mensions caused by the divergence in numerical value and
stabilize the physical modeling process.

Figure 2. The influence of feature pre-processing.

Maximum Phase Position. We calculate the phase posi-
tion s of each cluster using the motion equation. In our im-
plementation, we set a maximum phase position constraint,
i.e., min(s, xe). This constraint ensures that the force de-
creases accordingly as the movement s surpasses the over-
lap xe between two clusters. By adding this boundary con-
dition to the motion equation, we can enhances the algo-
rithm’s robustness and avoid extreme situations.

C. Comparing to Fine-tuning

In this paper, we have shown the effectiveness of our
method without the need for fine-tuning, Additionally, we
highlight the advantages of our method over fine-tuning in
this section. The t-SNE visualization in Fig. 1 reveals that
during the initial stage of fine-tuning, the clusters are not
well separated due to the random initialized classifier layer
and further adaptation to downstream tasks is required. For
comparison, the t-SNE visualization of our approach is
shown in Section 6.1.

We display the ranking performance achieved through
fine-tuning in Fig. 3, which reveals a performance pattern of
initial decline followed by improvement. This suggests that
fine-tuning requires multiple iterations to adapt to new tasks
for learning the classifier layer. In contrast, our proposed
physics-inspired method can simulate the dynamic feature
representation without the need for this adaptation process.

Furthermore, fine-tuning involves a grid search strategy
to select the best hyper-parameters, and fine-tuning the en-
tire model on the downstream dataset. This process requires



Table 2. The ground truth results of the 12 self-supervised pre-trained models on 10 downstream tasks.

Self-Supervised Aircraft Caltech101 Cars Cifar10 Cifar100 Flowers VOC Pets Food DTD
BYOL [9] 82.1 91.9 89.83 96.98 83.86 96.8 85.13 91.48 85.44 76.37
Deepclusterv2 [4] 82.43 91.16 90.16 97.17 84.84 97.05 85.38 90.89 87.24 77.31
Infomin [15] 83.78 80.86 86.9 96.72 70.89 95.81 81.41 90.92 78.82 73.74
InsDis [16] 79.7 77.21 80.21 93.08 69.08 93.63 76.33 84.58 76.47 66.4
MoCov1 [10] 81.85 79.68 82.19 84.15 71.23 94.32 77.94 85.26 77.21 67.36
MoCov2 [8] 83.7 82.76 85.55 96.48 71.27 95.12 78.32 89.06 77.15 72.56
PCLv1 [11] 82.16 88.6 87.15 86.42 79.44 95.62 91.91 88.93 77.7 73.28
PCLv2 [11] 83.0 87.52 85.56 96.55 79.84 95.87 81.85 88.72 80.29 69.3
Sela-v2 [1] 85.42 90.53 89.85 96.85 84.36 96.22 85.52 89.61 86.37 76.03
SimCLRv1 [6] 80.54 90.94 89.98 97.09 84.49 95.33 83.29 88.53 82.2 73.97
SimCLRv2 [7] 81.5 88.58 88.82 96.22 78.91 95.39 83.08 89.18 82.23 94.71
Swav [5] 83.04 89.49 89.81 96.81 83.78 97.11 85.06 90.59 87.22 76.68

Figure 3. The ranking performance of different fine-tuning itera-
tions.

testing 30 hyper-parameter setups, with each training pro-
cess consisting of 5000 iterations taking 16 minutes, mak-
ing it more time-consuming compared to our physics-driven
approach.

D. Ground Truth Results
We obtained the ground truth results by fine-tuning the

models using a grid-search strategy, following the the im-
plementation of [14, 17]. More information on this process
can be found in Section 4. In Table 2, we present the ground
truth results of the 12 self-supervised learning models and
10 downstream tasks.
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