
Appendix for Extensible and Efficient Proxy for Neural Architecture Search

1. Experiment Setup
Eproxy The learning rate is 1.0, and the weight decay is

1e−5. Each architecture is trained for ten iterations with 16
images randomly sampled from the CIFAR-10 training set
as a mini-batch (tiny dataset). The SGD optimizer is used
for training.

DPS The total evolution cycle is 200. The number of
architectures sampled for ranking is 20. The population size
is 40. The sample size is 10. The mutation rate is 0.2.

1.1. GPU Benchmark

We benchmark the average evaluation time for architec-
ture with Eproxy and GPU utilization on different search
spaces (shown in Table 1). For DPS, it’s straightforward to
estimate the total time. For example, if we conduct DPS
on NDS-DARTS search space with 20 architectures to get
each proxy’s ranking correlation and 200 total evolution cy-
cles, the time is ∼ 20 × 200 × 0.72 = 2880 seconds. All
experiments are done on a single A6000 GPU.

1.2. Search Spaces

NAS-Bench-101 [14]: 423K CNN architectures are
trained on CIFAR-10 dataset.

NAS-Bench-201 [3]: 15625 CNN architectures are
trained on CIFAR-10/CIFAR-100/TinyImageNet.

NDS dataset [11]: DARTS: A DARTS [9] style search
space including 5000 sampled architectures trained on
CIFAR-10. DARTS-fix w d: A DARTS style search space
with fixed width and depth including 5000 sampled archi-
tectures trained on CIFAR-10. AmoebaNet: An Amoe-
baNet [12] style search space including 4983 sampled ar-
chitectures trained on CIFAR-10. ENAS: An ENAS [10]
style search space including 4999 sampled architectures
trained on CIFAR-10. ENAS-fix w d: An ENAS style
search space with fixed width and depth including 5000
sampled architectures trained on CIFAR-10. NASNet: A
NASNet [16] style search space including 4846 sampled ar-
chitectures trained on CIFAR-10. PNAS: A PNAS [8] style
search space including 4999 sampled architectures trained
on CIFAR-10. PNAS-fix w d: A PNAS style search space
with fixed width and depth including 4559 sampled ar-
chitectures trained on CIFAR-10. ResNet: A ResNet [6]
style search space including 25000 sampled architectures

trained on CIFAR-10. ResNeXt-A: A ResNeXt [13] style
search space including 24999 sampled architectures trained
on CIFAR-10. ResNeXt-B: Another ResNeXt style search
space including 25508 sampled architectures trained on
CIFAR-10. DARTS in: A DARTS style search space in-
cluding 121 sampled architectures trained on ImageNet-
1k. DARTS-fix w d-in: A DARTS style search space
with fixed width and depth including 499 sampled archi-
tectures trained on ImageNet-1k. Amoeba in: An Amoe-
baNet style search space including 124 sampled architec-
tures trained on ImageNet-1k. ENAS in: A ENAS style
search space including 117 sampled architectures trained on
ImageNet-1k. NASNet in: A NASNet style search space
including 122 sampled architectures trained on ImageNet-
1k. PNAS in: A PNAS style search space including 119
sampled architectures trained on ImageNet-1k. ResNeXt-
A in: A ResNeXt style search space including 130 sampled
architectures trained on ImageNet-1k. ResNeXt-B in: An-
other ResNeXt style search space including sampled 164
architectures trained on ImageNet-1k.

NAS-Bench-Trans-Micro [4]: A NAS-Bench-201 style
search space including 4096 architectures trained on 7 dif-
ferent tasks on the subsets of Taskonomy dataset [15]. Tasks
including: Object Classification for 75 classes of objects.
Scene Classification for 47 classes of scenes. Room Lay-
out for estimating and aligning a 3D bounding box by uti-
lizing a 9-dimension vector. Jigsaw Content Prediction
by dividing the input image into 9 patches and shuffling
according to one of 1000 preset permutations. Semantic
Segmentation for 17 semantic classes. Autoencoding for
reconstructing the input images.

NAS-Bench-MR [2]: A complex search space for multi-
resolution networks including 2507 trained architectures
on 9 different tasks. Tasks including: ImageNet-50-1000
(Cls-A) with 50 classes and 1000 samples from each class
from ImageNet-1k. ImageNet-50-100 (Cls-B) with 50
classes and 100 samples from each class from ImageNet-
1k. ImageNet-10-1000 (Cls-A) with 10 classes and 1000
samples from each class from ImageNet-1k. ImageNet-10c
same as Cls-A but architectures are trained for 10 epochs.
Seg for Cityscapes dataset [1]. Seg-4x for Cityscapes
dataset with 4x downsampled resolution. 3dDet on KITTI
dataset [5]. Video for HMDB51 dataset [7]. Video-p for
HMDB51 but architectures are pretrained with ImageNet-
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Search space NB101 NB201 DARTS DARTS-fix-w-d Amoeba

Avg. Eval. Time (ms) 414.1 324.0 719.2 1198.3 1191.3

GPU Util. (MB) 4137 1603 3221 2275 3365

Search space ENAS ENAS-fix-w-d NASNet PNAS PNAS-fix-w-d

Avg. Eval. Time (ms) 908.2 1408.2 878.7 1041.4 1824.7

GPU Util. (MB) 3245 2577 3129 3391 3447

Search space ResNet ResNeXt-A ResNeXt-B NAS-Bench-Trans-Micro NAS-Bench-MR

Avg. Eval. Time (ms) 242.3 314.5 298.7 355.2 1011.9

GPU Util. (MB) 2765 2423 2777 2081 4229

Table 1. Average time for evaluating an architecture with Eproxy in the target search space and Maximum GPU utilization. The results
suggest that Eproxy is efficient and computation-friendly.

50-1000.

1.3. Searched Architectures

The searched architectures for DARTS-ImageNet search
space are shown in Fig 1.
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Figure 1. Visualize the architecture found by Eproxy and
Eproxy+DPS on ImageNet-DARTS search space.
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