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1. Experiments
1.1. Speedup in network architectures

Positional encodings. Positional encodings (PEs) are
usually used in coordinate networks [7] to increase the
bandwidth of the input by multiple (random) frequencies.
With PEs, coordinate network converges much faster and
achieves better performance [12]. Moreover, a recent
paper [15] points out that the success of PE attributes to
the rank increase of the input: the deepness of the neural
network is to increase the rank of the embedding and align
the embedding space to the output space. However, if the
rank of the input is higher, the network can be shallower.
Therefore, [15] uses a more complex PE to dramatically
increase the rank of the input, thus the followed deep non-
linear network can be replaced by a shallow linear function.

Complex PE-based linear model. In our paper, we
implemented a complex positional encoding (PE) [15]-
based linear model to test the efficiency of simplifying
network architectures. While simple PE refers to a simple
concatenation of the encoding in each input dimension,
complex PE [15] is a more complicated encoding that
computes the Kronecker product of the per-axis encoding.
As mentioned in [15], one reason behind the success of the
deep network is that it increases the rank of the low-rank
input. Therefore, if the input to the network has a high rank,
the network can be shallower accordingly. To increase the
rank of the input, we use a complex encoding instead of a
deep network. The rank of the complex encoding is

Rank (ϕ(px)⊗ ϕ(py)⊗ ϕ(pz)) =

Rank (ϕ(px))Rank (ϕ(py))Rank (ϕ(pz)) , (1)

which achieves full rank that allows us to only use a linear
layer W as a follow-up embedder.

The advantage of a complex PE lies in two aspects: first,
with a linear layer, the problem can be solved analytically in
many cases; second, if the closed-form solution is difficult
to obtain, using a linear layer in iterative solvers, such
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as gradient descent-based methods, will converge faster.
Similar to frequency-based encodings [12], shift-based
encodings like Gaussian or Triangle wave also work similarly
well [15]. These shift-based encodings involve very few
parameters for each sample point due to sparsity, while a
deep network requires significant amounts of parameters.

To reconstruct the signal S, we optimize

argmin
W

∥∥∥vec(S)− (ϕ(px)⊗ ϕ(py)⊗ ϕ(pz))
T vec(W)

∥∥∥2
2
.

(2)

When the coordinate is separable along each axis (e.g., 2D
image), using Kronecker product, we have a closed-form
solution as

W = ϕ(px)
−1Sϕ(py)

−Tϕ(pz)
−T . (3)

With all the complex PE theory in hand, it is nontrivial
to implement it in a scene flow problem, and to the best
of our knowledge, we are the first to apply complex PE
to real-word large-scale data. To employ complex PE in
the scene flow problem, we first replace the non-linear
multi-layer perceptrons (MLPs) in NSFP with a linear layer
parameterized by W∈RWxWyWz×3—Wx, Wy , and Wz are
encodings in each dimension and 3 is the dimension of the
flow—and encode the input coordinates in complex PE form.
The flow represented by MLPs can then be modified as

f = g (p; W) = (ϕ(pz)⊗ ϕ(py)⊗ ϕ(px)) vec (W) (4)

where ϕ (·) is the encoder, px, py , pz are the sample points
in x, y, z coordinates.

Blending function. However, in the 3D point cloud
case, the unordered points are not separable in each
axis. A blending function B is introduced to interpolate
the points and avoid the computation of large naive
complex PE. Please note that the unordered point cloud
has non-separable coordinates. According to [15], the
non-separable-coordinate problem can be approximated
by a blending function and an encoding of virtual
separable grid points. The blending approximation is
ϕ(pz) ⊗ ϕ(py) ⊗ ϕ(px) ≈ B(p;ϕ)ϕ(z) ⊗ ϕ(y) ⊗ ϕ(x),
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where x∈RWx , y∈RWy and z∈RWz are virtual grid points.
Using such approximation, the computation of complex PE
of grid points is as easy and fast as a matrix multiplication
due to the property of the Kronecker product. Intuitively,
the blending matrix B can be viewed as a matrix consisting
of non-linear interpolation coefficients that depend on the
encoding function ϕ(·). It is large but sparse, i.e., there are
only 8 non-zero values on each row (corresponding to the
8 neighboring grid points of the query point), we can index
the matrix efficiently by only querying the non-zero entries.
Meanwhile, different from [15], grids here have physical
meanings and their size can be adjusted.

Therefore, the scene flow becomes

f ≈ B(p;ϕ)vec
(
ϕ(x)Wϕ(z)Tϕ(y)T

)
, (5)

where ϕ(x)Wϕ(z)Tϕ(y)T is a simple notation for n-mode
multiplication. And the scene flow optimization is

argmin
W

∥∥∥f−B (ϕ(px)⊗ ϕ(py)⊗ ϕ(pz))
T vec(W)

∥∥∥2
2
.

(6)

We therefore solve W using gradient descent and distance
transform loss as

W∗=argmin
W

∑
p∈S1

D (p+B (p;ϕ)

vec
(
ϕ(x)Wϕ(z)Tϕ(y)T

)
,S2

)
. (7)

Compared to a L layer network of width W used
in NSFP to process N sample points, a linear layer
of size Wx×Wy×Wz from the Kronecker product
speeds up the network significantly from O(NW 2L)
to O(8N+3WxWyWz (Wx+Wy+Wz)). We further
constrain the optimization by applying an explicit total
variation (TV) regularizer on W as:

TV (W) =
1

(Wx−1)(Wy−1)(Wz−1)

Wx−2∑
i=0

Wy−2∑
j=0

Wz−2∑
k=0

√
(dxi,j,k)2+(dyi,j,k)2+(dzi,j,k)2, (8)

where dxi,j,k = Wi,j,k − Wi+1,j,k, dyi,j,k = Wi,j,k −
Wi,j+1,k, dzi,j,k = Wi,j,k−Wi,j,k+1. In all, the loss
function of complex PE model is (with TV)

L (W) =
∑
p∈S1

D
(
p+B (p) vec

(
ϕ(x)Wϕ(z)T

ϕ(y)T
)
,S2

)
+

λ

2
TV (W) . (9)

1.2. Speedup in point correspondence search

Before the deployment of the distance transform (DT),
we explored other strategies to speed up the point
correspondence search in Chamfer distance.

Build a k-d tree to search nearest neighboring points.
The point distance function D is computationally intensive,
as a set of point-to-point correspondences needs to be
optimized in each optimization step. One speedup is to
construct a k-d tree to accelerate the nearest neighbor
search which reduces the computation complexity of point
correspondence search from O(n2) to O(nlog n). Since the
target point cloud S2 is fixed, we only need to pre-build the
k-d tree for S2 once. However, the source point cloud S1 is
deformed in each optimization step, making the pre-build
of the source point cloud k-d tree happens in every iteration,
not to mention that the per-iteration k-d tree query is another
computation overhead when the number of points is big.

Randomly sample points. Stochastic gradient descent
(SGD) [10] is now broadly used in large-scale learning
problems. It approximates the actual gradient descent by
only computing the gradient of a randomly selected subset
of the original dataset at each iteration. However, it can
achieve relatively faster updates and guarantee a satisfied
global convergence, especially when dealing with large-scale
high-dimensional optimization [1].

Inspired by the idea of SGD, we choose to randomly
subsample points of the dense point cloud at each iteration.
Analogous to SGD, each individual point is viewed as sample
data. A naive sampling strategy is to sample a fixed number
of points. Instead, we develop sampling strategies based on
the number of iterations or the decreasing percentage of the
loss function. We sample fewer points at the beginning of
the optimization when the point correspondences are noisy,
and gradually increase the number of sampled points when
the optimization becomes better constrained and finds better
correspondences.

However, we also noticed that point sampling is not a
practical strategy when applied to real-world problems, such
as autonomous driving scenarios, where all points are needed
to get sufficient information for detailed non-rigid motions.

Reduce the frequency of updating correspondence.
Although Eq. (2) of the main paper optimizes network
weights (scene flow) through an explicit point distance
function, the point correspondence optimization is implicitly
included. We have mentioned that the optimization of
the point correspondence and the scene flow are highly
entangled. We cannot easily get a good scene flow estimation
even given the optimal point correspondences.

Instead of separating the scene flow and correspondence
optimization, we reduce the updating frequency of the
point correspondences from every single iteration to several
iterations. To guarantee a good initialization, we initially
consecutively update correspondences for a fixed number of
iterations.



Table 1. Additional computation time and performance on Waymo Open Scene Flow dataset. The upper tabular between blue bars are
experiments with the full point cloud, and the lower tabular between orange bars are experiments with only 8,192 points. Corr. / k-d tree /
DT query denotes correspondence search, k-d tree-based correspondence search, or DT query.

Method E
(m) ↓

Acc5
(%) ↑

Acc10
(%) ↑

θϵ
(rad) ↓

t (ms) ↓

Pre-compute Corr. / k-d tree / DT query Network Total

NSFP (baseline) 0.118 74.16 86.70 0.300 — 43.1 [15036] 2.38 [904] 18.39 s
Baseline (k-d tree CD) 0.104 74.13 86.81 0.296 4.36 15.24 [5283] | 2.8× 2.27 [838] |1.05× 8.51 s |2.16×
Baseline (k-d tree CD, linear) 0.101 70.14 86.24 0.315 10.23 12.92 [2349] | 3.3× 1.39[262] |1.71× 4.15 s |4.43×

PointPWC-Net [14] 4.109 0.05 0.36 1.742 — — — 185 ms |1.32×
FlowStep3D [4] 0.753 0.01 0.09 1.212 — — — 725 ms |5.18×
PV-RAFT [13] 10.675 0.03 0.13 1.794 — — — 505 ms |3.61×
R3DSF [3] 0.414 35.47 44.96 0.527 — — — 140 ms
Ours (8,192 pts) 0.106 77.53 88.99 0.329 35.22 0.23 [6.5] |496× 2.60 [76] |1.8× 121 ms |1.16×

Table 2. Additional computation time and performance on Argoverse Scene Flow dataset.

Method E
(m) ↓

Acc5
(%) ↑

Acc10
(%) ↑

θϵ
(rad) ↓

t (ms) ↓

Pre-compute Corr. / k-d tree / DT query Network Total

NSFP (baseline) 0.078 69.46 86.22 0.253 — 17 [5901] 2.31 [848] 8.38 s
Baseline (k-d tree CD) 0.078 69.14 85.99 0.253 3.96 11.3 [4063] | 1.5× 2.28 [830] |1.0× 6.25 s |1.34×
Baseline (k-d tree CD, linear) 0.071 68.72 86.39 0.288 8.87 9.36 [1701] | 1.8× 1.41 [253] |1.6× 3.09 s |2.71×

PointPWC-Net [14] 5.600 0.03 0.18 1.179 — — — 186 ms |1.65×
FlowStep3D [4] 0.845 0.01 0.08 1.860 — — — 729 ms |6.45×
PV-RAFT [13] 10.745 0.02 0.10 1.517 — — — 504 ms |4.46×
R3DSF [3] 0.417 32.52 42.52 0.551 — — — 113 ms
Ours (8,192 pts) 0.118 69.93 83.55 0.352 41.57 0.22 [6.33] |214× 2.51 [72.69] | 1.9× 124 ms |1.10×

However, the correspondence sampling strategy is
unfavorable due to a considerable performance compromise.

1.3. Implementation details

We provide more implementation details for our method.
Further details will be provided upon code release.

Datasets. We followed [5, 8] to create the pseudo scene
flow labels, and removed ground points according to each
dataset. Note that we used the raw point cloud from the lidar
sensor and did not crop the data to a small range.

Truncated Chamfer distance. We used a truncated
Chamfer distance loss for our baseline implementation as
mentioned in the original NSFP [5] that is unbiased on
extreme points. Practically, we chose 2m as a threshold
to eliminate large point distance.

Complex positional encoding. Since point clouds are non-
separable in 3D space, we first encoded the separable 3D
virtual voxel vertices using shifted Gaussian encoders as
depicted in Fig. 3 of the main paper. Since the 3D space
in autonomous driving scenarios is large, we empirically
found that a relatively larger voxel size (e.g., 2m or 5m
for autonomous driving scene flow datasets) that constrains

the motions as rigid as possible within a larger local region
is more suitable to encode scene flow. The choice of the
Gaussian sigma also depends on the voxel size. Generally,
the sigma of Gaussian encoding should be twice larger than
the voxel size. For example, for a voxel size of 2m, σ > 4
is favored. Note that the Gaussian sigma and the voxel size
can be adjusted within a small range.

1.4. Additional results

We provide additional results on Waymo Open and
Argoverse scene flow datasets in Tab. 1 and Tab. 2
respectively.

We show how k-d tree-based correspondence search
for CD loss speeds up the optimization, yet remains less
effective, which indicates the inherent computation cost of
correspondence search in CD loss cannot be easily solved
using engineering techniques. The performance of the linear
model drops by a large margin, suggesting that it is a less
favorable choice for scene flow estimation.

1.5. Performance gap of learning methods

The performance of learning-based methods such as
PointPWC-Net [14], FlowStep3D [4], PV-RAFT [13],
FLOT [9] is inferior compared to non-learning-based
methods (shown in Tab. 1 and Tab. 2, between the orange
bar). As discussed in the main paper, the performance



Figure 1. Visual results of the 2D scene flow estimation using our method on the Argoverse scene flow dataset. Green points are source,
purple points are target, and orange arrows represent the flow vectors.

Table 3. Performance of distance transform with different grid cell
sizes on a 2D BEV scene from Argoverse scene flow dataset. The
total grid is of size 160×150.

Grid cell
size (m)

E ↓
(m)

Acc5 ↑
(%)

Acc10 ↑
(%)

θϵ ↓
(rad)

t ↓
(ms)

Mem. ↓
(GB)

1 0.225 4.30 19.91 0.189 342 1.33
0.5 0.123 34.69 70.98 0.135 348 1.33
0.33 0.089 73.25 92.51 0.116 353 1.35
0.2 0.071 90.15 95.36 0.105 419 1.35
0.1 0.060 94.31 95.35 0.097 419 1.37
0.05 0.059 94.22 95.31 0.097 579 1.51
0.02 0.060 94.26 95.46 0.095 1151 2.68
0.01 0.058 93.92 95.25 0.095 1438 7.42

gap between the learning methods and the non-learning-
based methods lies in the OOD generalizability. Even
trained on similar lidar sensors—e.g., FlowStep3D was
trained on the KITTI [6] dataset—the Waymo Open [11]
and Argoverse [2] scene flow datasets have different point
cloud range, coordinate configurations, etc. to KITTI
dataset, making the pre-trained model vulnerable to these
data variations. In contrast, non-learning-based methods
maintained high accuracy on different datasets. Note that
our method still has competitive efficiency among these
learning methods.

1.6. Additional results of DT grid size

We provide additional results on a 2D bird’s eye view
(BEV) scene in Tab. 3. The result is aligned with the main
paper Fig. 6.

1.7. 2D BEV visual results

Some visual results of the 2D BEV scenes of the
Argoverse scene flow dataset are shown in Fig. 1.

1.8. Visual results

Please see Fig. 2 and the project webpage https://lilac-
lee.github.io/FastNSF for more visual results and
applications.

2. Application: point accumulation
The implicit and continuous neural function allows

for easy point accumulation with per-pair scene flow
estimation. Moreover, with the speedup that our method
has achieved, the computation of point accumulation
substantially decreased, making it possible for large amounts
of point densification.

2.1. Continuous scene flow field

It is important to note that using DT to replace CD will
not alter the continuous property. Therefore, similar to NSFP,
our method creates a continuous flow field in that the network
itself interpolates the motion of the entire 3D space, enabling
long-term flow estimation and point densification through
forward integration.

2.2. Dense point cloud accumulation

We followed [5] to accumulate point clouds using Euler
integration with per-pair scene flow estimation for the
Argoverse scene flow dataset. Different from [5], we
compute per-pair scene flow for each consecutive pair (i.e.,
frame 1→2, frame 2→3, ..., frame 10→11) and interpolate
fast neural scene flow to integrate 10 point clouds following
the reference frame into the reference frame to densify the
depth map and the point cloud. Some visual examples are
shown in Fig. 3.



Figure 2. Visual examples of the scene flow prediction using our method on Waymo Open scene flow dataset.

Figure 3. Visualization of the application of our method: (a) depth densification, and (b) point cloud accumulation. We present the original
sparse scenes on the upper row and the densified results on the lower row. For point cloud accumulation, we projected the densified point
cloud to the corresponding image plane for better visualization.
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