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A. Overview
In this supplementary material, we present the following.

• Axiomatic Properties of Shapley Value (Section B).

• Proof of Equation 10 (Section C).

B. Axiomatic Properties of Shapley Value
In this section, we mainly introduce the axiomatic prop-

erties of Shapley value. Weber et al. [1] have proved that
Shapley value is the unique metric that satisfies the follow-
ing axioms: Linearity, Symmetry, Dummy, and Efficiency.

Linearity Axiom. If two independent games u and v can
be linearly merged into one game w(U) = u(U) + v(U),
then the Shapley value of each player i ∈ N in the new
game w is the sum of Shapley values of the player i in the
game u and v, which can be formulated as:

ϕw(i|N ) = ϕu(i|N ) + ϕv(i|N ) (1)

Symmetry Axiom. Considering two players i and j in a
game v, if they satisfy:

∀U ∈ N \ {i, j}, v(U ∪ {i}) = v(U ∪ {j}) (2)

then ϕv(i|N ) = ϕv(j|N ).
Dummy Axiom. The dummy player is defined as a

player without interaction with other players. Formally, if a
player i in a game v satisfies:

∀U ∈ N \ {i}, v(U ∪ {i}) = v(U) + v({i}) (3)

then this player is defined as the dummy player. In this way,
the dummy player i has no interaction with other players,
i.e. v({i}) = ϕv(i|N ).

Efficiency Axiom. The efficiency axiom ensures that the
overall reward can be assigned to all players, which can be
formulated as follows:∑

i∈N
ϕv(i) = v(N )− v(∅) (4)

C. Proof of Equation 10
In this section, we provide detailed proof for Equation 10

in Section 3.5.2. The semantic Shapley interaction between
moment x and query y in video Vi can be decomposed as
follows:
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