-Supplementary Material-
 G2L: Semantically Aligned and Uniform Video Grounding via Geodesic and Game Theory

Hongxiang Li^{1}, Meng $\mathrm{Cao}^{2,1}$, Xuxin Cheng ${ }^{1}$, Yaowei Li^{1}, Zhihong Zhu ${ }^{1}$, Yuexian Zou ${ }^{1 \dagger}$
${ }^{1}$ School of Electronic and Computer Engineering, Peking University
${ }^{2}$ International Digital Economy Academy (IDEA)
\{lihongxiang, chengxx, zhihongzhu, ywl\}@stu.pku.edu.cn; \{mengcao, zouyx\}@pku.edu.cn

A. Overview

In this supplementary material, we present the following.

- Axiomatic Properties of Shapley Value (Section B).
- Proof of Equation 10 (Section C).

B. Axiomatic Properties of Shapley Value

In this section, we mainly introduce the axiomatic properties of Shapley value. Weber et al. [1] have proved that Shapley value is the unique metric that satisfies the following axioms: Linearity, Symmetry, Dummy, and Efficiency.

Linearity Axiom. If two independent games u and v can be linearly merged into one game $w(\mathcal{U})=u(\mathcal{U})+v(\mathcal{U})$, then the Shapley value of each player $i \in \mathcal{N}$ in the new game w is the sum of Shapley values of the player i in the game u and v, which can be formulated as:

$$
\begin{equation*}
\phi_{w}(i \mid \mathcal{N})=\phi_{u}(i \mid \mathcal{N})+\phi_{v}(i \mid \mathcal{N}) \tag{1}
\end{equation*}
$$

Symmetry Axiom. Considering two players i and j in a game v, if they satisfy:

$$
\begin{equation*}
\forall \mathcal{U} \in \mathcal{N} \backslash\{i, j\}, v(\mathcal{U} \cup\{i\})=v(\mathcal{U} \cup\{j\}) \tag{2}
\end{equation*}
$$

then $\phi_{v}(i \mid \mathcal{N})=\phi_{v}(j \mid \mathcal{N})$.
Dummy Axiom. The dummy player is defined as a player without interaction with other players. Formally, if a player i in a game v satisfies:

$$
\begin{equation*}
\forall \mathcal{U} \in \mathcal{N} \backslash\{i\}, v(\mathcal{U} \cup\{i\})=v(\mathcal{U})+v(\{i\}) \tag{3}
\end{equation*}
$$

then this player is defined as the dummy player. In this way, the dummy player i has no interaction with other players, i.e. $v(\{i\})=\phi_{v}(i \mid \mathcal{N})$.

Efficiency Axiom. The efficiency axiom ensures that the overall reward can be assigned to all players, which can be formulated as follows:

$$
\begin{equation*}
\sum_{i \in \mathcal{N}} \phi_{v}(i)=v(\mathcal{N})-v(\varnothing) \tag{4}
\end{equation*}
$$

C. Proof of Equation 10

In this section, we provide detailed proof for Equation 10 in Section 3.5.2. The semantic Shapley interaction between moment x and query y in video V_{i} can be decomposed as follows:

$$
\begin{align*}
\mathfrak{I}\left(\left[\mathcal{H}_{x y}^{i}\right]\right) & =\phi\left(\left[\mathcal{H}_{x y}^{i}\right] \mid \mathcal{H}^{i} \backslash \mathcal{H}_{x y}^{i} \cup\left\{\left[\mathcal{H}_{x y}^{i}\right]\right\}\right) \\
& -\phi\left(\mathbf{h}_{i x}^{V} \mid \mathcal{H}^{i} \backslash \mathcal{H}_{x y}^{i} \cup\left\{\mathbf{h}_{i x}^{V}\right\}\right) \\
& -\phi\left(\mathbf{h}_{i y}^{Q} \mid \mathcal{H}^{i} \backslash \mathcal{H}_{x y}^{i} \cup\left\{\mathbf{h}_{i y}^{Q}\right\}\right) \tag{5}\\
& =\underset{C}{\mathbb{E}}\left\{\underset{\substack{\mathcal{U} \subseteq \mathcal{H}^{i} \backslash \mathcal{H}_{x y}^{i} \\
|\mathcal{U}|=C}}{\mathbb{E}}\left[f\left(\mathcal{U} \cup \mathcal{H}_{x y}^{i}\right)-f(\mathcal{U})\right]\right\} \\
& -\underset{C}{\mathbb{E}\left\{\underset{\substack{\mathcal{U} \subseteq \mathcal{H}^{i} \backslash \mathcal{H}_{x y}^{i} \\
|\mathcal{U}|=C}}{\mathbb{E}}\left[f\left(\mathcal{U} \cup\left\{\mathbf{h}_{i} x^{V}\right\}\right)-f(\mathcal{U})\right]\right\}} \\
& \left.-\underset{C}{\mathbb{E}\left\{\underset{\mathcal{U} \subseteq \mathcal{H}^{i} \backslash \mathcal{H}_{x y}^{i}}{|\mathcal{U}|=C}\right.} \mathbb{E}\left[f\left(\mathcal{U} \cup\left\{\mathbf{h}_{i y}^{Q}\right\}\right)-f(\mathcal{U})\right]\right\} \tag{6}\\
& =\underset{C}{\mathbb{E}\left\{\underset{\mathcal{U} \subseteq \mathcal{H}^{i} \backslash \mathcal{H}_{x y}^{i}}{|\mathcal{U}|=C}\right.} \mathbb{E}\left[f\left(\mathcal{U} \cup \mathcal{H}_{x y}^{i}\right)-f\left(\mathcal{U} \cup\left\{\mathbf{h}_{i x}^{V}\right\}\right)\right. \\
& \left.\left.-f\left(\mathcal{U} \cup\left\{\mathbf{h}_{i y}^{Q}\right\}\right)+f(\mathcal{U})\right]\right\} \tag{7}
\end{align*}
$$

References

[1] Robert J Weber. Probabilistic values for games. The Shapley Value. Essays in Honor of Lloyd S. Shapley, pages 101-119, 1988. 1

