
Supplementary Materials

A. Overview

This document presents additional technical details, and
provides both quantitative and qualitative results to support
the submitted paper. In Sec. B, we discuss the large-scale
datasets used in the experiments, and analyze their intrinsic
characteristics that cause severe domain shifts. In Sec. C,
we elaborate on the network architectures of the 3D detec-
tors employed for comparisons, and describe the implemen-
tation details of GPA-3D. In Sec. D, we offer more com-
prehensive quantitative results and visualizations of our ap-
proach.

B. Datasets

We conduct comprehensive experiments on the preva-
lent autonomous driving datasets, namely Waymo [6],
nuScenes [1], and KITTI [2]. These datasets have di-
verse weather conditions, sensor configurations, foreground
styles, and annotation quantities, thereby causing serious
domain shifts when adapting a LiDAR-based 3D detector
from one dataset to another. Fig. 1 presents randomly se-
lected examples from the aforementioned datasets. Subse-
quently, we will introduce each dataset in detail.

Waymo. For recent 3D detection task, Waymo [6] is the
most large-scale and challenge benchmark, which includes
798 sequences (more than 150,000 frames) for training and
202 sequences (approximately 40,000 frames) for valida-
tion. Waymo provides the point clouds captured by a 64-
beam LiDAR and 4 200-beam blind LiDAR for each frame.
In our experiments, we use the 1.2 version of Waymo and
subsample only 50% of the training samples, consistent
with ST3D [9] and ST3D++ [10].

nuScenes. The nuScenes [1] dataset comprises of 28,130
samples in the training set and 6,019 samples in the vali-
dation set. Point clouds within nuScenes are captured by
a 32-beam LiDAR in Boston and Singapore, under diverse
weather conditions. To ensure consistency with previous
works, we access the performance of transferring 3D detec-
tors across different LiDAR beams by treating all 28,130
training scenes as the target domain.
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Figure 1. Visualizations of the point clouds for different datasets.
Left: Frontal view. Right: Bird’s-eye view.

KITTI. As a popular autonomous driving dataset,
KITTI [2] contains 7,481 labeled frames for training and
7,518 unlabeled frames for testing. The point clouds of
KITTI are captured by a 64-beam Velodyne LiDAR in Karl-
sruhe, Germany. Following previous approaches, we parti-
tion the training frames into two distinct sets: the train split,
comprising 3,712 samples, and the val split, consisting of
3,769 samples.

C. More Implementation Details

Co-training Framework. We follow the default settings
of ONCE [4], an open-source 3D detection codebase, to
construct the co-training framework in GPA-3D. Specifi-
cally, this co-training framework feeds an equal number of
point clouds from both source and target domains into the
3D detector in each mini-batch. The outputs generated by
the detector are then used for loss computation, with the su-
pervision of ground truth and pseudo-labels, respectively.
The calculated losses are subsequently summed together to
update the detector parameters and prototypes via the back-
propagation method.



Table 1. Comparison with previous works on the pedestrian cate-
gory. The adaptation scenario is nuScenes → KITTI, and the base
detector is SECOND-IoU [8]. For fair comparison, the results are
cited from the original paper of ST3D++ [10].

Method APBEV Closed Gap AP3D Closed Gap

Source Only 39.95 - 34.57 -
SN [7] 38.91 −16.07% 34.36 −3.11%

ST3D [9] 44.00 +60.36% 42.60 +118.79%
ST3D++ [10] 47.20 +108.41% 43.96 +138.91%

GPA-3D (ours) 48.17 +122.97% 45.20 +157.25%
Improvement +0.97 +14.56% +1.3 +18.34%

Oracle 46.64 - 41.33 -

Detection Architecture. To ensure fair comparisons,
we adopt the default configurations of ST3D [9] and
ST3D++ [10] to set the voxel size in SECOND-IoU [8] and
PointPillars [3] to (0.1m, 0.1m, 0.15m) and (0.2m, 0.2m),
respectively. Furthermore, for all datasets utilized in our
experiments, we shift the coordinate origins to the ground
plane, and separately set the detection ranges of X , Y , Z
axes to [-75.2m, 75.2m], [-75.2m, 75.2m], and [-2m, 4m].

Hyper-parameters in GPA-3D. For the geometry-aware
prototype alignment, we set the length Mi of the feature se-
quences to be equal to the number of foreground areas in the
i-th BEV feature map. Additionally, we set the prototype
numbers to 8 and 4 for the adaptation scenarios of Waymo
→ KITTI and Waymo → nuScenes, respectively. For the
soft contrast loss, we determine the balance coefficients β1,
β2, and β3 to be 5, 1, and 5, respectively. In our implemen-
tation, we perform the instance replacement augmentation
with the probability pIRA of 0.25.

D. Exploration Studies
Extend GPA-3D to Multiple Categories. For au-
tonomous driving vehicles, the detection of pedestrians on
the road is also a crucial aspect. In fact, it is easy and ef-
fective to extend GPA-3D to other classes. Compared to
cars, the geometric variations of pedestrians are smaller,
thus we reduce the prototype numbers to 3 for pedestrian.
As shown in Tab. 1, GPA-3D improves the pedestrian de-
tection performances to 48.17% APBEV and 45.20% AP3D,
surpassing previous state-of-the-art methods. Compared to
ST3D++ [10], our approach achieves 0.97% and 1.3% gains
in terms of APBEV and AP3D, respectively. These improve-
ments demonstrate that GPA-3D has consistent effective-
ness on the pedestrian detection.

Why Could Adaptation Method Outperforms the Ora-
cle. In the adaptation scenario of Waymo → KITTI, the
APBEV of GPA-3D has surpassed that of the Oracle method,
which is fully supervised by the ground truth of KITTI

Table 2. Analysis of different alignment schemes in GPA-3D on
Waymo → nuScenes. Conv. indicates that an extra branch with
three convolution layers are attached to the BEV features for align-
ment. Pre. means to align the intermediate features from the back-
bone network. BEV is the BEV-level alignment in GPA-3D.

Method w/o align Conv. Pre. BEV

APBEV / AP3D 35.34 / 20.13 35.92 / 22.37 35.72 / 22.13 37.25 / 22.54

Table 3. Comparison on nuScenes → KITTI with PointRCNN [5].

Method SF-UDA3D Dreaming MLC-Net ST3D++ GPA-3D
Reference [3DV’20] [ICRA’22] [ICCV’21] [TPAMI’22] (ours)

0.7 IoU AP3D 54.5 - 55.42 67.51 67.77
0.5 IoU AP3D - 70.3 - 79.93 81.06

dataset. We attribute the reason into two aspects. 1) Label-
insufficient target domain: Compared to Waymo, KITTI is
a relatively label-insufficient dataset (7,000 vs. 150,000).
The limited annotations affect the performance of Oracle.
2) Stronger generalization ability: Our method reduces the
feature discrepancy across domains, bringing stronger gen-
eralization ability. This makes it easier for model to apply
the knowledge learned from source domain to the target do-
main, thereby improving the final performance.

Analysis of Different Alignment Schemes. We investi-
gate the effects of different alignment schemes in GPA-3D,
as shown in Tab. 2. Without alignment, the adaptation per-
formance degrades due to the distributional discrepancy in
the feature space. Compared with the policies of Conv. and
Pre., our BEV-level alignment achieves superior results, in-
dicating the effectiveness of our approach in directly deal-
ing with the distributional discrepancy problem at BEV fea-
tures.

Extend GPA-3D to Point-based Architecture. We also
try to extend GPA-3D to a point-based 3D detector, PointR-
CNN [5]. For the point-wise features, we assign proto-
types to them based on the geometric information of the ob-
jects to which they belong. The results on nuScens→KITTI
demonstrate that GPA-3D has the potential to be applied to
point-based detectors with minor adjustments.

Qualitative Results. We present more visualizations on
the adaptation scenarios of Waymo → KITTI and Waymo
→ nuScenes in Fig. 2. These qualitative results demon-
strate the effectiveness of GPA-3D in improving adaptation
performance via reducing the false positive predictions and
enhancing the regression accuracy. To further validate the
efficacy of our GPA-3D, we employ the t-SNE method to
visualize the feature distributions of different approaches,
as illustrated in Fig. 3. The results clearly show that GPA-
3D clusters the features of the same category in different
domains, while also separates the features of different cat-



egories. This indicates that GPA-3D provides better align-
ment of features and facilitates the transferring across do-
mains.
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Figure 2. Qualitative results on the adaptation scenarios of Waymo → KITTI and Waymo → nuScenes. For each box, we use the X to
specify the orientation. The predicted results and ground truths are painted in blue and green, respectively.
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Figure 3. The t-SNE visualization of different methods on Waymo → nuScenes. SECOND-IoU [8] is adopted as the base detector.


