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1. Choice of Hyperparameters
We analyze the choice of two hyper-parameters in our

approach, γ, and β.
Choice of β. We introduce β to prevent the model from

overfitting to the small number of labeled data of minor-
ity classes. In the training process, the detector is prone
to overfit fixed annotations of minority classes. By apply-
ing large weights, the predictions for minority classes on
the labeled set could be over-confident. Consequently, the
positive gradients of these classes become smaller and en-
force the class-wise weights to become larger, leading to
more serious overfitting. However, this issue is trivial in the
unlabeled set. When the weights for a minority class be-
come larger, more pseudo labels are sampled for training,
which increases the gradient for this minority class to pre-
vent the model from overfitting. Besides, since the sampling
rate of labeled images is always larger than unlabeled im-
ages in current SSOD methods, the model tends to overfit
with labeled images. Small class weights for labeled data
can effectively alleviate overfitting. Thus, we smooth the
class weights for labeled images when keeping the weights
for unlabeled data the same to balance the positive gradient
and negative gradient of each class. We compare the per-
formance of the detector under different β in COCO split1
in Tab.1. When β is set to 1, the performance of minority
classes is better than that under β = 0.5 by 1.5%, but the
performance of majority classes drops by 1.4%. It demon-
strates that a larger β is beneficial to minority classes but
causes underfitting of majority classes.

Choice of γ. Tab.2 illustrates the AP of our detector un-
der different values of γ. In general, our method is not sen-
sitive to the choice of γ. Setting γ to 0.5 leads to a slight
performance improvement in minority classes but causes
a small performance drop in majority classes. In fact, γ
is a parameter depending on the class frequencies of the
dataset. As the mean frequency of all classes in MS-COCO
→ Object365 and LVIS sub-tasks is much smaller, we set a
smaller γ for these tasks.

Table 1: Performance comparisons of setting different β on
the split1 of MS-COCO sub-task. AP is chosen as the met-
ric.

β all maj min
0.3 26.5 30.8 13.4
0.5 26.5 30.7 13.9
1 25.8 29.3 15.4

Table 2: Performance comparisons of setting different γ on
the split1 of MS-COCO sub-task. AP is chosen as the met-
ric.

γ all maj min
0.1 26.4 30.7 13.5
0.5 26.5 30.7 13.9
1 26.3 30.4 14.0

2. Motivation of Jacobi Iterate Module

By optimizing the equations of

wi × G̃ii = −
∑
k ̸=i

wk × G̃ik (1)

and
n+1∑
i=1

wi = n+ 1 (2)

we obtain a class weights wi(i = 1, 2, ..., n) utilized for
the reweighting and thresholding in our method. However,
traditional direct solutions to optimize the group of linear
equations always obtain a negative weight wi < 0 in com-
plex tasks such as MS-COCO → Object365 and LVIS sub-
tasks. To solve this, we introduce the learnable parameters
ai(i = 1, 2, ..., n + 1) with softmax function to obtain wi

subject to wi > 0. To update the value of ai, we introduce
a loss to mimic the Jacobi iterate method. Experimentally,

1
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Table 3: Performance comparisons of using different sam-
pling strategies on the MS-COCO sub-task. AP is chosen
as the metric.

labeled unlabeled all maj min
Random Random 25.5 30.9 9.4

RFS Random 25.8 30.9 10.5
RFS RFS 26.0 30.8 11.7
RFS CrS 26.5 30.7 13.9

the AP of the detector trained with our Jacobi iterate mod-
ule (26.5%) is the same as that of the detector trained with
direct solution (26.5%) in the MS-COCO sub-task.

3. Extended Ablation of Sampling Strategies
We conduct experiments on split1 of the MS-COCO sub-

task to further demonstrate the effectiveness of our pro-
posed CrS module. Different sampling strategies are ap-
plied to labeled and unlabeled images. According to Tab. 3,
our method performs best among all variants. Concretely,
we choose the random sampling strategy applied to both la-
beled and unlabeled data as the baseline, which achieves
30.9% and 9.7% on the majority classes and the minor-
ity classes, respectively. Changing the random sampling
strategy to RFS increases the performance by 0.4% on all
classes, and we choose this RFS variant as our strong base-
line. By replacing the RFS on unlabeled data with our pro-
posed CrS module, the performance of minority classes in-
creases by 2.2%, and the performance of all classes also
further increases by 0.5%. This demonstrates the superior-
ity of our CrS module over RFS on unlabeled data.

4. Analysis of Confirmation Bias
Confirmation bias[1] refers to the phenomenon that the

model training is overfitted to the incorrect pseudo labels
predicted by the model itself. Here, we present an anal-
ysis of confirmation bias in our task. We analyze the
confirmation bias in our tasks from two perspectives: (1)
the model biased toward majority classes tends to predict
pseudo labels biased toward majority classes; (2) the incor-
rect pseudo labels for minority classes dominate the learn-
ing of the model since the ground truth labels in labeled data
are scarce for these classes.

To illustrate the first aspect of this phenomenon, we se-
lect Top-10 AP classes for both majority classes and mi-
nority classes and calculate the precision and recall metrics
of pseudo labels of Top-10 classes in both majority classes
and minority classes. The results are presented in Fig. 1.
Obviously, there is a performance bias towards the majority
classes of the baseline (Soft Teacher), which can be seen
from the recall metric in Fig. 1 (b). This manifests that the
detector is leaning towards generating more pseudo labels

Majority(top 10) Minority(top 10)

(a) Precision of pseudo labels

Majority(top 10) Minority(top 10)

(b) Recall of pseudo labels

Figure 1: Comparisons between our method and the base-
line (Soft Teacher) regarding the precision and recall met-
rics of pseudo labels of each class in MS-COCO sub task.
We select Top-10 classes for majority classes and minority
classes based on the AP performance, respectively.

for the majority classes while ignoring the minority classes.
However, our proposed framework achieves a better trade-
off between the precision and recall metrics of both major-
ity classes and minority classes. Specifically, our method
has a higher recall of pseudo labels for minority classes and
preserves the high precision and recall of pseudo labels of
majority classes. This demonstrates that our method can
effectively alleviate the confirmation bias towards majority
classes.

To illustrate the second aspect of the confirmation bias,
we analyze the precision and recall metrics of pseudo labels
in LVIS sub-task for Soft Teacher(baseline), the Long-tailed
method EqlV2[7], and our method. In this task, the implicit
instances of minority classes in unlabeled data are always

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

ICCV
#5153

ICCV
#5153

ICCV 2023 Submission #5153. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Precision of pseudo labels

(b) Recall of pseudo labels

Figure 2: Comparisons between the baseline (Soft Teacher),
EqlV2 and our method regarding the precision and recall
metrics of pseudo labels of each class in LVIS sub task.

scarce. The pseudo labels for minority classes are prone
to be incorrect and thus introduce noises for the detector in
the training process. The reasons are two-fold: (1) Since
the ground truth annotations for these classes are few, it is
hard for the model to learn sufficient knowledge for these
classes to generate high-quality pseudo labels. (2) Differ-
ent from the classification task, there are lots of instances of
other classes and uncorrelated instances(regarded as back-
ground, for example) in an image. As ground truth labels
and the implicit instances in unlabeled images are scarce,
the learning of detectors is heavily interfered with by in-
correct pseudo labels from instances from other classes and
uncorrelated instances. As shown in Fig. 2, the precision
of pseudo labels of rare classes is much lower than that of
common and frequency classes. It demonstrates that most

of pseudo labels for minority classes are incorrect and thus
lead to confirmation bias. Although EqlV2 generates more
pseudo labels for minority classes than the Baseline, the
precision of these pseudo labels is lower. In contrast, our
method generates more pseudo labels for minority classes
with high precision, showing superiority to combat the con-
firmation bias.

5. Model Analysis

We present more model analysis by answering the fol-
lowing two questions: (1) Do we have more balanced gra-
dients in training? (2) Do we have better representations?

25000 50000 75000 100000 125000 150000 175000

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Majority Baseline
Minority Baseline
Majority Ours
Minority Ours

Figure 3: Comparisons between our method and the base-
line (Soft Teacher) regarding the averaged gradient norm of
the majority classes and that of the minority classes dur-
ing the training process. The dashed dot lines denote the
baseline model and the solid lines denote our method. The
YELLOW lines represent the mean gradient norm of the
majority classes and the BLUE lines denote the mean gra-
dient norm of the minority classes.

Do we have more balanced gradients in training? We
present the comparisons between our method and the base-
line (Soft Teacher) regarding the averaged gradient norm of
the majority classes and that of the minority classes during
the training process in Fig. 3. According to Fig. 3, it is clear
that (1) our method exhibits a higher gradient norm than that
of the baseline in both majority and minority classes; (2)
as the training proceeds, our method shows that the gradi-
ent norm gap between the majority classes and the minority
classes becomes smaller while the baseline model does not
show such a property. These two observations manifest that
our method has achieved a more balanced gradient in train-
ing. Besides, we further present the positive and negative
gradient norms for a representative minority class(laptop)
in Fig 5, which shows that the positive and negative gradi-
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ent norms can be equalized with GbR.

0 10 20 30 40 50 60 70 80
0.0

0.2

0.4

0.6

0.8
Majority
Minority

(a) Baseline

0 10 20 30 40 50 60 70 80
0.0

0.2

0.4

0.6

0.8

Majority
Minority

(b) Ours

Figure 4: Comparisons between our method and the base-
line (Soft Teacher) regarding the mean prediction score of
each class.

Do we have better representations? We adopt the
mean prediction score as the metric to measure whether the
representation of a class is better or not. That is, the higher
the averaged prediction scores for a class, the better the rep-
resentation of that class is. Thus, we visualize the mean
prediction score of each class when the model is converged.
According to Fig. 4, for the majority classes, the mean pre-
diction scores of both our method and the baseline are al-
most the same, suggesting that they both have good rep-
resentations; for the minority classes, it is obvious that the
prediction scores of our method are much higher than that of
the baseline, demonstrating that our method has better rep-
resentations for the minority classes which result in a class
balanced object detector. Besides, as shown in Fig 6, we

25000 50000 75000 100000 125000 150000 175000

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
Negative without GbR 
Positive without GbR
Negative with GbR
Positive with GbR

Figure 5: The visualization of positive and negative gradi-
ents with and without GbR.

also visualize the class logits with or without our method.
The class logits with GbR are much more balanced than
logits without GBR. It shows our method can level off the
class logits during training to learn better representations.
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Figure 6: The comparison of class logits with and without
GbR.

6. More Implements Details
To stabilize the gradient statistics in the gradients ma-

trix G̃, we propose to employ a warm-up process before
solving the analytical solutions for the class-wise weights
wi(i = 1, ..., n+ 1). Specifically, we adopt 4000 iterations
for the MS-COCO sub-task and 16000 iterations for the
MS-COCO → Object365 and LVIS sub-task. During the
warm-up process, the Gradient-based Reweighting(GbR)
module and the Gradient-based Reweighting(GbT) module

4
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Table 4: Performance of our method with Unbiased
Teacher[3] on the split1 of MS-COCO sub-task

Methods all maj min
Unbiased Teacher 22.3 28.6 5.3

+ Ours 24.7 28.5 13.2

Table 5: Comparisons with long-tailed learning methods on
the split1 of MS-COCO sub-task.

Methods all maj min
Logits Adjustments 24.6 30.6 6.5
Classifier Retraining 24.5 29.9 8.4

Ours 26.5 30.7 13.9

are not turned on in training. That is wi = 1 and θi = θ for
i = 1, 2, ..., n+1. We will also release our dataset and code
in the future to show more details.

7. Experiments on more SSOD detectors
We also conduct the experiments with Unbiased

Teacher[3] in Tab 4. The results demonstrate the general-
ization of our method on different SSOD detectors.

8. Comparisions with more long-tailed learn-
ing methods

We compare our method with Logits Adjustments[4] and
Classifier Retraining[2] in Tab 5. It shows our method beat
existing long-tailed learning methods by a clear margin,
demonstrating the effectiveness of our method.

9. Extended Descriptions of Gradient-based
Reweighting

We present a simple example to elaborate on the calcu-
lation of the gradient matrix G̃ shown in Fig. 7. The class-
wise weights are the analytical solutions of the linear equa-
tions regarding G̃. The calculated weights are then applied
to the classification losses f l(·) and fu(·) to achieve class-
balanced training at the gradient level and to the Gradient-
based Thresholding module to acquire more pseudo labels
for the minority classes at the image-level.

10. Qualitative Comparisons against Other
Methods

We present several examples of qualitative compar-
isons between our method and current methods, including
Soft Teacher[9], C2AM loss[8], DASO[5] and DeFRCN[6]
shown in Fig. 8 for the MS-COCO sub-task, Fig. 9 for the
MS-COCO → Object365 sub-task and Fig. 10 for the LVIS
sub-task. Obviously, our method generates more detection

results for minority classes while keeping the same amount
of detection results for the majority classes, leading to a bet-
ter overall performance improvement on both sub-tasks.

5
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Annotations 𝑐!(𝑗 = 1,2,3)

Step 1: Calculate Softmax function to 𝒙!
Step 2: Calculate gradients to 𝑥!" with respect to 𝑓#(-) or 

𝑓$(-) for each proposal
Step 3: Calculate gradients from class 𝐶" to 𝐶% to 

form 𝐺&
Step 4: Apply Transpose to 𝐺&
Step 5: Apply moving average update
Step 6: Replace the final row for the background class
Step 7: Solve a set of linear equations to obtain 𝑤"

Class logits 𝑥!" for each proposal

For class number n=2, assume there are 3 proposals in a batch (j=1,2,3)
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Figure 7: A simple example to illustrate the process of Gradient-based Reweighting.
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(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

Figure 8: Qualitative comparisons against other methods in MS-COCO sub-task:(a) Ground Truth labels; (b) Soft Teacher[9];
(c) DASO[5]; (d) DeFRCN[6]; (e) Ours. The bounding boxes with RED borderline are predicted as minority classes while
the bounding boxes with GREEN borderline are predicted as majority classes.7



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

ICCV
#5153

ICCV
#5153

ICCV 2023 Submission #5153. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

Figure 9: Qualitative comparisons against other methods in MS-COCO → Object365 sub-task:(a) Ground Truth labels; (b)
Soft Teacher[9]; (c) Eqlv2[7]; (d) DeFRCN[6]; (e) Ours. The bounding boxes with RED borderline are predicted as minority
classes while the bounding boxes with GREEN borderline are predicted as majority classes.
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(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

Figure 10: Qualitative comparisons against other methods in LVIS sub-task:(a) Ground Truth labels; (b) Soft Teacher[9];
(c)Eqlv2[7]; (d) DASO[5]; (e) Ours. The bounding boxes in RED, YELLOW and GREEN are predicted as rare classes,
common classes and frequent classes, respectively. Note that the instances in LVIS dataset are not fully annotated.
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