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In this supplementary material, we provide illustra-

tions that show more details on the design of our HD-

AMOT model, present additional experiments of the hyper-

parameter study, and show more quantitative results of ac-

tive learning for multi-object tracking.

1. HD-AMOT Details
Diversified Informative Representation Details. In

this section, we provide illustrations that show more details

on how feature spaces sset and sframe are built according

to the output of the tracker ft. Fig. 1(A) shows how to

build the feature space Sset of set-level discrepancy and Fig.

1(B) how to build the feature space Sframe of frame-level

diversity. To facilitate the calculation of maximum mean

discrepancy (MMD) and cosine similarity in diversified in-

formative representation learning, we transform the hetero-

geneous clues obtained by the tracker ft to vector features

in feature spaces.

Specifically, when learning the set-level discrepancy,

we perform global average pooling and max pooling

on the global semantics F f and the local semantics

{F f1 ,F f2 , ...,F fK} respectively. Then the results of av-

erage pooling and max pooling are concatenated, followed

by flattening to generate the semantic feature vectors. For

the global spatial topology Gh and local spatial topology

{Gh1 ,Gh2 , ...,GhK}, they are also flattened to generate

topology feature vectors. Finally, these semantic feature

vectors and topology feature vectors make up our feature

space Sset, which is used to calculate the maximum mean

discrepancy between the labeled subset XL
t and unlabeled

subset XU
t to generate the state representation st of our de-

sign MDP. In frame-level diversity learning, the global se-

mantics F f and global spatial topology Gh are flattened in

the same way to get the corresponding feature vectors. In

addition, the object scale matrix Gb is flattened to gener-
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Figure 1. The construction process of Sset and Sframe.

ate two scale vectors. These vectors of global semantics,

global spatial topology, and object scale constitute the fea-

ture space Sframe to generate the action at of each unla-

beled frame for our design MDP, where the cosine simi-

larity distribution is recorded to learn the histogram-based

representation.

Informative Frame Selection Network Details. The

detailed illustration of the lightweight IFSN is shown in Fig.

2. Firstly, st and ot are fed into a linear layer with ReLU ac-

tivation to generate a 32-D feature. Then, st, at, and the 32-

D cooperation feature are concatenated and passed through

two linear layers with ReLU activation to obtain the 128-D

feature. Finally, a final linear layer with ReLU activation is

applied to obtain the score of an unlabeled frame. Regard-

ing the fixed-length compact representation ot obtained in

multi-frame cooperation, the illustration of its generation is



score

1 32

1 128

1 1

1 128

Figure 2. The architecture of the designed lightweight IFSN.
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Figure 3. The illustration of multi-frame cooperation.

shown in Fig. 3.

2. Additional Experiments
In this section, we analyze the influence of hyper-

parameters of our HD-AMOT framework: the number of lo-

cal spatial topologies (local semantic features) and the parti-

tion ratio of the reward subset XR/X . In addition, MOT15

[2], MOT17 [3], MOT20 [1], and Dancetrack [4] datasets

are used for complex multi-pedestrian tracking. To verify

the generalization of our HD-AMOT, the performance eval-

uation of multi-car tracking is conducted on BDD100K [5].

Analysis of Different Local Numbers. We investigate

the performance of our HD-AMOT framework under dif-

ferent numbers of local spatial topologies (local semantic

features) and present the results in Tab. 1. When the num-

ber of local parts is 0, it means that the HD-AMOT model

only uses global features to compute the set-level discrep-

ancy. Remarkably, an increase in MOTA and IDF1 from 0
local parts to 9 local parts can be observed, which demon-

strates that local parts bring greater improvement. We also

noted that the upward tendency of MOTA and IDF1 stag-

nates around 9 local parts, and it shows a downward ten-

dency after that. Hence, we use 9 local parts in the set-level

discrepancy learning. Moreover, we observe that the uti-

lization of local parts has a great influence on IDF1 but a

slight influence on MOTA, which indicates that the local

Table 1. Ablation study of different numbers of local parts on

MOTA and IDF1 metrics.

Number MOTA (%) IDF1 (%)

K = 0 62.9 64.6

K = 4 63.2 64.5

K = 9 63.2 66.5
K = 16 63.0 65.7

K = 25 63.0 65.1

60
61
62
63
64
65
66
67
68
69

4 6 8 10 12 14 16

MOTA (%) IDF1 (%)

6 8 10 12 14
The partition ratio of X (%)

Figure 4. The histograms reflecting the influence of different par-

tition ratios XR/X on MOTA and IDF1 metrics.

Table 2. Active learning results with a 20% labeled budget for one-

stage multi-car tracking.

Sampling Method MOTA (%) IDF1 (%)

Random Sampling 25.63 32.95

Uniform Sampling 25.81 33.44

Our HD-AMOT 26.96 34.12

parts mainly bring significant gain to the object association

of one-stage MOT.

Analysis of Different Partition Ratios XR/X . We

also look into the performance of our proposed HD-AMOT

framework under different partition ratios of the reward sub-

set XR as shown in Fig. 4. Our HD-AMOT obtains the best

MOTA and IDF1 when the partition ratio XR/X = 10.

Considering that in one-stage MOT, MOTA is a comprehen-

sive metric to evaluate the detection performance and IDF1

estimates the object association ability of a tracker, we use

XR/X = 10 in this paper to obtain the best detection and

association performance.

Active Learning for Multi-car Tracking. To verify

the generalization of our proposed HD-AMOT, the perfor-

mance evaluation of multi-car tracking is further conducted

on BDD100K, as described in Tab. 2, where ours is su-



perior to other sampling methods. Notably, pedestrians

and cars are typical representatives of non-rigid objects and

rigid objects respectively. The superior performance of our

proposed HD-AMOT on pedestrians and cars illustrates the

ability of our method to be extended to other classes.
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