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1. The Experiments on the Resolution of 512
We also evaluate the performance on three datasets:

Jung [5], Kligler [6], and the proposed SD7K, in a rela-
tively low resolution of 512 × 512 where the divisions be-
tween training and testing are shown in Table 1. We train
each dataset separately to satisfy the settings of the previous
works. The batch size is set to 1 for the other two datasets
due to the limited samples.

Datasets # of Training # of Testing
Jung [5] 67 20
Kligler [6] 272 28
SD7K 6479 760

Table 1. The settings of the training and testing.

We give the quantitative evaluation in Table 2 and the
visual results are available in Figure 2 and Figure 3. As
shown in Table 2, our proposed FSENet outperforms all
other methods under the low-resolution data setting. In the
Figure 2 and Figure 3, we can clearly observe that Wang et
al. [15], SP+M+I Net [8], SG-ShadowNet [12] and Shadow-
Former [3] exhibit the phenomenon of incomplete shadow
removal. Meanwhile, [15] shows a large difference from
the target in white balance. Despite BEDSR-Net [9] per-
forming relatively well in both white balance and shadow
removal, a close examination of the finer details reveals that
BEDSR-Net yields blurry results with missing texture de-
tails. Simultaneously, BEDSR-Net fails in Figure 3 in terms
of shadow removal. In comparison, our result achieves the
best performance in white balance, shadow removal, and
detail restoration.

2. More High-Resolution Results on SD7K
We give more visual comparisons on the high-resolution

inputs in Figure 4. The results in the first two rows come
from Kligler dataset, and the results in the last two rows
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Figure 1. The network structure of our DFE and TAA.

come from SD7K. It can be observed that the shadow re-
moval results from Jung et al. [5] are unstable, and the white
balance often differs from the target. Meanwhile, shadow
removal with MaskShadowGAN [4] is always incomplete,
with the original shadow regions prone to leaving stains
and causing texts to become unreadable. In contrast, our
method performs relatively well in both white balancing and
shadow removal.

2.1. The Detailed Structure of DFE and TAA Blocks

In Sec. 4 of the main paper, we show the introduction
of the TAA and DFE by text description, here, we give a
detailed network structure to better understand our method
as shown in Figure 1.
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Figure 2. Qualitative results of the methods comparison in low-resolution training samples on SD7K dataset.
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Figure 3. Qualitative results of the methods comparison in low resolution on Jung dataset.

Jung (512× 512) Kligler (512× 512) SD7K (512× 512)Method PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓
Input 13.01 0.82 60.85 13.26 0.80 56.73 15.95 0.89 44.09
Wang et al. [15] 11.17 0.78 73.27 15.73 0.82 44.04 15.31 0.82 47.88
Wang et al. [13] 9.11 0.71 90.99 15.38 0.72 48.03 13.32 0.68 67.48
Shah et al. [11] 14.69 0.80 47.97 8.36 0.70 97.86 9.89 0.71 86.35
Jung et al. [5] 22.77 0.88 19.13 14.30 0.84 49.91 19.86 0.92 26.76
AEFNet [2] 23.52 0.85 19.44 19.53 0.89 27.72 24.18 0.95 16.83
BEDSR-Net [9] 21.51 0.85 22.58 22.31 0.75 20.86 21.50 0.90 30.52
DHAN [1] 20.58 0.82 25.95 25.66 0.84 15.49 25.61 0.85 14.27
LG-ShadowNet [10] 19.99 0.84 27.69 26.29 0.87 14.38 24.88 0.86 16.77
Mask-ShadowGAN [4] 19.41 0.82 29.16 25.79 0.87 15.01 24.82 0.87 15.43
SG-ShadowNet [12] 22.90 0.86 19.20 25.34 0.91 14.96 28.22 0.96 10.61
SP+M Net [7] 20.04 0.84 29.13 18.85 0.86 29.57 18.84 0.91 30.94
ST-CGAN [14] 13.93 0.33 52.51 12.17 0.44 63.22 12.87 0.32 61.17
ShadowFormer [3] 20.61 0.85 26.96 17.26 0.77 36.31 23.71 0.90 17.54
BMNet [16] 23.12 0.80 18.19 26.15 0.84 14.17 24.86 0.80 15.59
Ours 24.36 0.88 16.04 29.11 0.94 10.49 28.67 0.96 10.00

Table 2. Quantitative results of the models’ comparison on three datasets in low-resolution. The best result is highlighted in red and bold.
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Figure 4. Qualitative results of the methods comparison in high resolution, the first two rows represent the results on the Kligler dataset
and the last two rows depict the results on the SD7K dataset.
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