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A. Open-Set Semi-Supervised Learning Setting
A.1. Class Space Mismatch

Open-Set Semi-Supervised Learning (OSSL) assumes that labeled and unlabeled data have different class spaces, which
can be referred by the term, Class Space Mismatch. Let Cl and Cu be the class sets of labeled and unlabeled data. Several
pioneer works [3,16] assume that Cl ̸⊆ Cu and Cu ̸⊆ Cl, while more recent OSSL works [6,9,11,22] focus on the case where
Cl ⊂ Cu. For this point, we share a similar opinion with [7]: As it is usually much easier to collect unlabeled data than labeled
data, it is more likely for unlabeled data to have more categories than labeled data. Thus, we assume Cl ⊂ Cu in this work.

Remark. A broader concept is Class Distribution Mismatch [4, 23]. If we denote the marginal class distributions of
labeled and unlabeled data as pl(y) and pu(y), then the class distribution mismatch in SSL indicates that pl(y) ̸= pu(y). The
class space mismatch can be also viewed as such a case, where pl(y ∈ Cu/Cl) = 0 ̸= pu(y ∈ Cu/Cl). In this work, we just
focus on the class space mismatch, which is the most common and problematic case of class distribution mismatch [7].

A.2. Connections to Out-of-Distribution Detection

Out-of-distribution (OOD) detection [10] aims to detect OOD samples existing in test data by assigning higher OOD
scores to OOD samples than ID samples. Representative works design the OOD scores using the predicted logits and
probabilities [14, 18], or using the information in feature space [12], or combining both of them [19]. More comprehensive
reviews can be found in [20].

Although unseen-class outliers can be also regarded as a kind of OOD samples, OOD detection is largely different from
open-set SSL in the following aspects. Firstly, OOD detection tasks usually assume that sufficient labeled ID samples are
provided for training (and no OOD sample exists), which cannot be satisfied in OSSL. It is a key reason why OOD detection
methods cannot be directly applied in OSSL for detecting outliers. Secondly, the main objective of OOD detection is to
separate OOD samples from ID samples, which can viewed as a binary classification task. However, the motivation of OSSL
is to fully exploit open-set unlabeled samples for improving the model’s performance on multi-class classification tasks.
Therefore, a model good at OOD detection could not perform well on ID (seen-class) classification. This is the reason why
we adopt Balanced Accuracy (BA) rather than AUROC, which is widely used in OOD detection, for open-set evaluation.

B. Distribution Alignment Strategy
For the distribution alignment (DA) strategy, we simply follow the implementation from ReMixMatch [1]. Specifically, we

maintain a running average of the model’s predictions on unlabeled data, denoted by pavg . The marginal class distribution
pmrgl is estimated based on the labeled samples in training (which is the uniform distribution in our setting). Given the
model’s prediction pw

i = ϕ(f(Tw(ui))) on an weakly augmented unlabeled sample Tw(ui), we scale pw
i by the ratio

pmrgl/pavg and normalize the result as a valid probability distribution:

p̃i = Normalize(pw
i · pmrgl

pavg
), (1)

where Normalize(p)i = pi/
∑

j pj . pw
i is then used as the seen-class prediction for producing the unified open-set target and

training the closed-set classifier via pseudo-labeling. pavg is computed with the predictions over the last 128 batches.
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In practice, we find the DA strategy is effective when the number of classes is relatively large (e.g., for CIFAR-100 and
ImageNet-30). However, for CIFAR-10 with fewer classes, the DA strategy may lead to performance degradation instead.
The reason could be that the presence of unseen-class outliers interferes with the estimation of pavg . Thus, we do not apply
the DA strategy in the tasks on CIFAR-10.

C. Extensions with Self-Supervision
IOMatch is such a simple framework that we can easily incorporate other powerful techniques with it to further improve

the performance. Recently, self-supervised learning objectives including pretext tasks [5] and contrastive learning [2, 8]
have shown strong performance in SSL [1, 13, 24]. We find experimentally that the self-supervised modules can also bring
performance gains to IOMatch (see Table 5 in the paper). Here we introduce the details of the extensions of IOMatch.

It is quite easy to incorporate the rotation recognition pretext task with IOMatch. For each unlabeled image ui, we rotate
ui by an angle of ∠i degrees and obtain Rotate(ui,∠i), where ∠i is sampled uniformly from ∠i ∼ {0, 90, 180, 270}. We
add an auxiliary classifier θ(·) (implemented as a fully connected layer) connected to the backbone encoder, which predicts
the rotation degree among the four options, i.e., a = θ(f(Rotate(ui,∠i))) ∈ R4. The rotation prediction loss is defined as:

Lrot =
1

µB

µB∑
i=1

H(OneHot(∠i),a). (2)

We implement the contrastive learning objective following SimMatch [24]. Given the projected features of all labeled
samples {zl : l ∈ (1, . . . , Nl)} (maintained in a memory bank), the instance similarities between each unlabeled sample ui

and all labeled samples are defined as ri:

r
w/s
i,l =

exp(sim(z
w/s
i , zl))∑Nl

j=1 exp(sim(z
w/s
i , zj))

, (3)

where sim(u,v) = u⊺v/ ∥u∥ ∥v∥, and t = 0.1 is the temperature parameter. The similarity target r̃ is then generated by
scaling rwi with p̃i. The contrastive loss is defined as:

Lcon =
1

µB

µB∑
i=1

H(r̃i, r
s
i ). (4)

As the above two self-supervised objectives are both standard cross-entropy losses, we can simply add them to the total
loss with the weights Lrot = Lcon = 1. In spite of the promising results, the extensions of IOMatch introduce extra network
modules (e.g., the rotation classifier and the memory bank) and thus extra training costs. It is noteworthy that, as a simple
yet effective OSSL framework, IOMatch can outperform the complicated baselines on most tasks even without these extra
learning objectives.

D. Inference
We use the standard closed-set classifier for the inference in the closed-set classification task, in order to ensure fair

comparisons with other baselines. In fact, the open-set classifier can also be used for closed-set classification by ignoring the
last item of qt. We find experimentally that in this case, the predictions made by ϕ(·) and ψ(·) are mostly the same. The
difference in closed-set accuracy is usually less than 0.5%. In the paper, we evaluate the closed-set performance using the
closed-set classifier to keep consistent with other methods. However, we can just employ a single open-set classifier ψ(·) for
both the close-set and open-set classification tasks for the sake of simplicity.

E. Open-Set Evaluation with Foreign Outliers
We have performed open-set evaluation with the test sets of CIFAR-10/100 (see Table 2 of the paper), which consist of

all seen and unseen classes observed during training. In such case, unseen-class outliers in testing are similar to those in
training. As the seen and unseen classes come from the same dataset, we denote them as the intra-dataset test data. Here
we also consider the inter-class case where additional foreign outliers come from different datasets than CIFAR10/100. In
particular, we add samples from SVHN [15], LSUN [21], and synthetic Gaussian and uniform noise images [22] as part of
the testing data.



The results are shown in Table S1. Since the added foreign outliers are more dissimilar to the inliers, they are easier to
identify. Therefore, the open-set accuracy on the inter-dataset test data is a little higher than that on the intra-dataset test data,
while the difference is not significant.

Table S1. Open-set classification balanced accuracy (%) on the inter-dataset open-set test data, which contain samples from different
datasets than CIFAR10/100.

Dataset CIFAR-10 CIFAR-100

Class split (Seen / Unseen) 6 / 4 20 / 80 50 / 50 80 / 20

Number of labels per class 4 25 4 25 4 25 4 25

O
pe

n-
Se

tS
SL

UASD [3] AAAI’20 18.32 ± 0.61 35.78 ± 0.22 11.03 ± 0.43 27.35 ± 0.33 7.03 ± 0.45 31.94 ± 0.74 5.92 ± 0.35 27.83 ± 0.85
DS3L [6] ICML’20 31.38 ± 0.52 40.92 ± 0.68 13.05 ± 1.03 35.03 ± 0.47 11.84 ± 0.79 34.88 ± 0.57 11.38 ± 0.89 29.32 ± 0.38

MTCF [22] ECCV’20 28.35 ± 4.84 46.06 ± 0.69 8.16 ± 2.12 26.77 ± 3.70 4.14 ± 0.38 38.04 ± 0.15 1.46 ± 0.17 30.51 ± 0.27
T2T [11] ICCV’21 51.35 ± 1.76 61.78 ± 0.89 17.82 ± 1.57 37.78 ± 0.73 12.33 ± 1.87 43.86 ± 0.71 34.45 ± 0.67 51.77 ± 1.03

OpenMatch [17] NeurIPS’21 14.37 ± 0.05 20.31 ± 3.49 8.77 ± 2.83 39.96 ± 1.17 9.97 ± 0.37 49.56 ± 1.15 6.31 ± 0.88 44.77 ± 0.58
SAFE-STUDENT [9] CVPR’22 46.37 ± 0.61 54.23 ± 0.42 16.31 ± 0.88 29.44 ± 0.56 23.31 ± 0.93 46.91 ± 1.42 29.52 ± 0.55 50.83 ± 0.41

IOMatch Ours 77.82 ± 2.48 82.44 ± 0.54 46.97 ± 2.05 60.30 ± 0.99 46.09 ± 1.98 60.64 ± 0.79 40.08 ± 0.75 54.57 ± 0.30
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