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Method Conference Params
SPIN [15] ICCV 2019 27.0M
PyMaf [27] ICCV 2021 45.2M
PARE [14] ICCV 2021 32.9M
ROMP [21] ICCV 2021 33.1M
3dCrowdNet [6] CVPR 2022 30.5M
OCHMR [13] CVPR 2022 35.8M

Ours - 39.6M

Table A: Comparisons to the state-of-the-art methods on
model parameters. The amount of model parameters is com-
parable with previous methods. However, our proposed
method recovers meshes by fusing 2D and 3D features ob-
tained from lifting 2D features to 3D. To learn and reason
3D representations, our JOTR incorporates an additional
module, which increases the number of parameters.

In this supplementary material, we provide additional im-
plementation details, ablation studies and qualitative results
in Section A and B and C respectively.

A. Additional Implementation Details

A.1. Training Details

Implementation Details. In our experiments, we apply the
pretrained weights by Xiao et al. [26] to initialize ResNet-
50 [7] because of the slow convergence with ImageNet pre-
trained weights as analyzed by [6, 14]. As for transformers,
the channel size of the input and output is 256, and the num-
ber of heads is 8. The number of layers is 2, 2, 1 and 3 for 2D
transformer encoder, 3D transformer encoder, transformer
decoder and refining layers respectively, and the dimension
of the feed-forward network is 1024. SMPL query tokens
and joint query tokens are randomly initialized and updated
during training. As for positional encoding, we apply the
sine-cosine positional encoding [4, 23] to the input of the
2D and 3D transformer encoders. For training speedup, we
apply distributed training with PyTorch [20] using 8 Tesla
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Figure A: Human body joints we use in our experiments for
locating and extracting 3D joint features in 3D space.

V100 GPUs.
Loss. We apply trainable parameters to λ3D, λ2D and
λSMPL, and the parameters are initialized as 1.0. λj2n

and λj2j are set to 0.01.
Human Body Joints.

As shown in Fig. A, we employ 15 joints to locate and
extract 3D human representation in 3D space. Note, the
joints are not applied for evaluating the performance of our
method, but for adding supervisions for 3D space.

A.2. Details of Evaluating Datasets

3DPW-OC. Following Zhang et al. [29], 3DPW-OC con-
tains 23 person-object occlusion video sequences. Please
refer to [29] for the details.
3DPW-PC. 3DPW-PC contains 1314 frames of 6 person-
person occlusion video sequences. They contain severe
person-person occlusion cases with at least two-people over-
lapping. Please refer to [21] for the details.
3DPW-Crowd. 3DPW-Crowd contains 1073 frames of 2
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Method Training Datasets MPJPE ↓
ROMP [21] Human3.6M [8], MPI-INF-3DHP [18], MuCo-3DHP [19], MSCOCO [17], CrowdPose [16],

3DOH [29], MPII [2], LSP [10], LSP-Extended [11], AICH [25], PoseTrack [1]
134.6

3dCrowdNet [6] Human3.6M [8], MuCo-3DHP [19], MSCOCO [17], CrowdPose [16], MPII [2] 127.6
BEV [22] Human3.6M [8], MuCo-3DHP [19], MSCOCO [17], CrowdPose [16], MPII [2], LSP [10] 127.9

Ours Human3.6M [8], MuCo-3DHP [19], MSCOCO [17], CrowdPose [16] 114.7

Table B: Comparisons to the state-of-the-art methods on CMU-Panoptic [12]. Our proposed JOTR uses the least training
datasets and achieves the best accuracy in multi-person crowded scenes.

Figure B: An example of internet video. Please use Adobe Acrobat to view it.

Figure C: An example of internet video. Please use Adobe Acrobat to view it.

Figure D: An example of internet video. Please use Adobe Acrobat to view it.

person-person occlusion video sequences. Please refer to [6]
for the details.
3DOH. 3DOH [29] is an object-occluded dataset contain-

ing 1290 images for testing, which is used to evaluate the
performance under object occlusion.
CMU-Panoptic [12] is a dataset with multi-person indoor
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Input Image Inaccurate 2D Pose Our Prediction Input Image Inaccurate 2D Pose Our Prediction

Figure E: Visualization of our predictions under incorrect 2D poses. Our JOTR can still recover the correct 3D pose and shape.

J2N J2J MPJPE ↓ PA-MPJPE↓ PVE↓
✗ ✗ 84.7 53.2 106.1
✓ ✗ 82.8 52.6 104.2
✗ ✓ 83.2 52.2 104.6

✓ ✓ 82.4 52.0 103.4

Table C: Ablation study of 3D joint contrastive learning on
3DPW-Crowd. J2N: joint-to-non-joint contrast. J2J: joint-
to-joint contrast.

scenes. Following [9, 21], we select four sequences (i.e.,
Haggling, Mafia, Ultimatum, and Pizza) for evaluation. The
sequences contain 9600 frames and 21,404 persons with GT
3D pose annotations.

Positive Samples MPJPE ↓ PA-MPJPE↓ PVE↓
Predicted Joints 83.6 52.5 104.9

GT Joints 83.2 52.2 104.6

Table D: Ablation study of joint-to-joint contrastive learning
on 3DPW-Crowd.

3DPW [24] We use the test set of 3DPW [24] following the
official split protocol. The test set contains 26240 images and
35515 persons with GT 3D pose and shape annotations. We
use 14 joints defined by Human3.6M [8] for evaluating PA-
MPJPE and MPJPE following the previous works [9, 21, 29].
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Input Image 3DCrowdNet PARE JOTR (Ours) Input Image 3DCrowdNet PARE JOTR (Ours)

Figure F: Qualitative comparison on the OCHuman [28]. 3DCrowdNet and PARE fails to recover the details of human body
due to the lack of estimating invisible information. Our JOTR mitigates this limitation by reasoning in both 2D and 3D
features.

A.3. Details of 2D Pose Predictors

To guide our 3D mesh reconstruction, we utilize 2D pose
outputs from OpenPose [3] and HigherHRNet [5]. OpenPose
outputs are used for 3DPW, 3DPW-OC, and 3DPW-PC since
they are included in the annotations. As for 3DPW-Crowd,
3DOH and CMU-Panoptic, we use the HigherHRNet outputs
by running the official code implementation. Note, for a
fair comparison, we use the same 2D pose input for both
3DCrowdNet and our JOTR.

B. Additional Ablation Studies
All experiments of ablation studies are carried out on the

3DPW-OC dataset, as described in the main manuscript (i.e.,
Tab. 4 5 6 and 7).
3D joint contrastive learning on 3DPW-Crowd. As shown
in Tab. C, we conduct ablation studies of 3D joint contrastive

learning on person-person occlusion scenarios. Both joint-
to-non-joint and joint-to-joint contrastive losses result in
improved performance, which indicates that our proposed 3D
joint contrastive learning also works well in person-person
occlusion scenarios.

Positive samples in joint-to-joint contrast. A natural ques-
tion is that whether the positive samples should be the pre-
dicted joints or the ground-truth joints. As shown in Tab. D,
we conduct an ablation study on this question. We find that
using the predicted joints as positive samples results in a
slight performance drop. A possible reason is that the pre-
dicted joints are not accurate enough in the early training
stage, resulting in extracting less informative joint features,
which leads to the performance drop.
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Input Image 3DCrowdNet JOTR (Ours)
Figure G: Qualitative comparison on the CrowdPose [16] test set.
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Input Image ROMP JOTR (Ours)
Figure H: Qualitative comparison on the CrowdPose [16] test set.

C. Additional Qualitative Results

Qualitative results on challenging Internet videos. The
qualitative results obtained from challenging Internet videos
are illustrated in Fig. B, C and D. Due to the limitation of
the detector, some frames remain persons not detected. No-

tably, our JOTR method achieves commendable performance
without any employing temporal smoothing techniques.

Accurate 3D predictions from inaccurate 2D inputs. As
shown in Fig. E, in the case of person-person occlusion,
the 2D pose outputs from 2D pose detectors may be inac-
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curate. However, our JOTR can still recover accurate 3D
human meshes from these inaccurate 2D pose inputs, which
demonstrates the robustness of our JOTR.
Comparison with 3DCrowdNet and PARE. 3dCrowd-
Net [6] is a top-down mesh recovery method, which also
applies 2D keypoints as guidance. As shown in Fig. F and G,
even though 3dCrowdNet adds 2D keypoints in the input, it
still fails to recover the 3D human mesh in the case of severe
occlusion due to the lack of 3D information. Our JOTR not
only recovers accurate 3D human meshes under occlusions,
but also predicts the possible poses of unseen body parts.

PARE [14] is a top-down mesh recovery method for
person-object occlusion scenarios. As shown in Fig. F, it
fails under multi-person crowding scenarios because of the
noise from other people. Also, it suffers from the lack of
estimating invisible information resulting in unreasonable
predictions of unseen body parts.
Comparison with ROMP. ROMP [21] is a bottom-up mesh
recovery method for multi-person scenarios. Fig. H shows
qualitative comparison with ROMP. ROMP samples 2D fea-
tures via center points to recover 3D meshes, which is not
robust enough to describe the detail of the human body
and sensitive to occlusions. Our method fuses 2D and 3D
features with transformers and attends 3D joints behind oc-
clusions, resulting in robust 3D mesh recovery.
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