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Figure 1: Illustration of sparsely labeled video clips. It
shows how the location of the key frame shifts from 1 to
n. Here n = 5.

1. Model

1.1. Details of the transformer-based relation en-
coder

The Spatial Teacher (i.e. Temporal Student) Sa, in Fig-
ure 2, is designed for modeling the spatial relationships be-
tween AUs. It is consisted of multiple identical blocks, and
each block contains a multi-head self-attention module and
a fully connected feed-forward layer. The original ViT uses
an extra learnable BERT’s token to perform the classifica-
tion token, as their input images are split into fixed-size
patch by location. In this work, the local region of AU-
specific features have been fully activated before feeding
them into the transformers. Thus, we remove the classifi-
cation token design. Ds =

{
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s , f
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}
∈ R1×U×W

(Fig.2 in the original paper) where U indicates the AU num-
ber of the dataset, and W is the size of feature fs. Here we
set W = U . Likewise, Db =

{
p1b , p

2
b , · · ·, pnb

}
∈ R1×N×W

where N indicates the frame length of input clips, and W is
the size of feature pb. Here we set W = U . The dimension
of positional embedding is consistent with fs and pb, and
the dimension of initial frame-specific features pa are con-
sistent with the post frame-specific features pb. The multi-
head attention matrix (in the original paper) of the Spa-
tial Teacher is denoted as Headsi (Qi,Ki, Vi) ∈ RH×U×U

where U indicates the AU number of the dataset. H in-
dicates the head number of the self-attention module. In
this paper, we set 8 as the head number. The multi-head
attention matrix of the Temporal Teacher is denoted as
Headti(Qi,Ki, Vi) ∈ RH×N×N where N indicates the

frame length of input clips. H indicates the head number
of the self-attention module.

1.2. Details of input data settings

KS sparsely samples the annotations by every k frames
in the training data pool. Here we assume that only 1

k labels
are available. KS sets the labeled frames as the key frames.
These sparse key frames are fed into branch A for learn-
ing AU dependencies under fully supervision. At the same
time, KS pick n − 1 neighbours around the key frames as
the unlabeled data. These neighbours, with the correspond-
ing key frame, form an n-frame sequence as the input of
branch B. As shown in Figure 1, we assume only one label
is accessible by every k = 9 frames. The labeled frames
(red color) denotes the key frames. For each video clip, it
contains n = 5 frames. The key frame location is decided
by m = B mod n where B indicates the Bth batch of input
data. Here the key frame location of the first batch of data
is 1 mod 5 equals 1. As the batch number changing, the
location of the key frame changes from 1 to 5 accordingly.
Thus, each input video clip contains one label, and the data
with different key frame location is balanced. The design is
also used to decide the active student for spatial knowledge
distillation.

1.3. Q&A for Model Design and Experiments

In this section, we explain some questions of the model
design and experiments.

What’s the difference between general Spatial-
Temporal information and our Spatial-Temporal AU
correlation knowledge? The multi-head attention matri-
ces, in Figure 2, contains the relevance score of each atomic
AU class and frame-level class. By modeling the spatial
and temporal AU dependency in multiple attention matri-
ces, the video-level and frame-level AU co-occurrence and
mutual exclusive relation is refined and learned to improve
the the general Spatial-Temporal information.

Why do we choose transformer? First, self-attention
based methods (i.e., JAAnet [4]) have been proved to be
very effective in learning AUs semantic relation. Second,
the residual connection, multi-head attention, and positional
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Figure 2: Illustration of the transformer-based model Sa for learning AU dependencies with the multi-head self-attention
matrix.

⊕
indicates matrix addition.

⊗
indicates matrix multiplication.

embedding designs make it an efficient tool to learn the
AU relation with multiple matrices (i.e. multiple complete
graphs) and short or long-term temporal cues.

Why are Spatial Student models based on MLP in-
stead of transformer? In most cases, KS need feed Spatial
Student models with unlabeled data, which means the re-
sults derived by Spatial Students is less faithful. Thus, a
weak design of Spatial Student is necessary. In additional,
different design of Spatial Student amd Spatial Teacher can
be recognized as a noise [5] or a model-wise perturbation
for better applying the consistency regularization.

Why do we need the temporal constrain for pseudo-
labeling? First, automatic AU detection, as a multi-label
task, faces some difficulties in selecting and retaining the
pseudo labels when only partial labels are with high confi-
dence score. Compared with multi-class tasks, the one-hot
format of multi-labels makes it hard to decide if the pseudo
labels are confident in a holistic way or a local way. Set-
ting the temporal constrain makes it easier to filter the cases
which are not consist with the regular pattern of facial ac-
tion movements. Second, the temporal label smoothness is
also a soft constrains from human knowledge for better gen-
eralizing out-of-distribution AU data.

How to generate pseudo labels? We pick up the class
which has maximum predicted probability for each binary
class of unlabeled samples.

Can KS be trained with video clips without any la-
bels? If yes, how? Yes, it can. When feeding KS with the
unlabeled video clips, we only update our model with the
loss of pseudo-labeling and Temporal Teacher. It worth not-
ing that the unlabeled video clips are not allowed to use be-

fore the model training is stable (10 epochs in this project).
Otherwise learning unreliable knowledge first will lead the
model to the error-prone issue.

Why using 15% labels achieves nearly the same per-
formance as using 100% on BP4D? This is due to the
large portion of overlapped annotations, using 15% labels
with sparsely sampled annotations makes the performance
reach the “saturation” quickly, hence there is no significant
performance gain after 15% towards the use of 100% labels.
Our finding complies with the “less is better” principle con-
firmed by the other existing works [2].

How about applying different sequential perturba-
tion for the pseudo label confirmation module? The fact
is that using or mixing certain perturbations (e.g., temporal
feature shift, random mask, and flip) does not bring obvious
performance improvement. We speculate that other pertur-
bations can not model the temporal fluctuations caused by
incorrect pseudo labels well. Applying inappropriate or ex-
cessive perturbation operation can even degrade the perfor-
mance.

1.4. Inference Strategy

We adopt the inductive learning for the proposed semi-
supervised model. Only unlabeled data in the training
dataset is used for pseudo-labeling. In the inference
time, all the sub-networks are employed in the frame-
work. The pseudo-labeling and the binary classification
of perturbation-ware pseudo-labeling is removed from the
framework.

With respect to the data structure, We adopt sparse-
training-then-dense-testing [2] strategy for the proposed
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Figure 3: Effect of the video clip length n. (a) and (b) indi-
cates the F1 score with different video clip lengths on BP4D
and DISFA.

model. KS sparsely samples the annotations by every k
frames in the training data pool. Then, the video clips are
densely selected from the testing pool for predictions. The
same key-frame position shifting strategy is applied in both
training and inference stage.

2. Experiment
2.1. Additional Implementation Details

All training images in the same video clips are randomly
rotated (-45 to 45 degrees), flipped horizontally (50% pos-
sibility), and with color jitters (saturation, contrast, and
brightness) simultaneously. The detailed specification of
Knowledge-Spreader is shown in the original code (model
designing part). The complete code will be released to the
research community by the time of the paper being pub-
lished. We choose 5 as the frame length of each input video
clip for the optimal time-and-accuracy trading-off. We im-
plement our Knowledge-Spreader (KS) with the Pytorch
framework and perform training and testing on the NVIDIA
GeForce 2080Ti GPU.

2.2. Additional Quantitative Evaluation

The quantitative results with different label ratios are
shown in Table 1 for reference. It corresponds to Figure 5
in the original paper. In addition, due to the page limitation,
only partial comparison results with supervised methods in
terms of individual AU are shown in Table 2 of the original
paper. Table 2 shows the complete comparison results.

2.3. Effect of the Video Clip Length n

To investigate the influence of the input clip length,
we perform experiments by the proposed model with 10%
sparsely sampled annotations on BP4D and DISFA. Fig-
ure 3 shows the F1 score curve with n changes. Overall,
the performance improve with the n increases from 2 to a
certain threshold. A long video clip, on the other hand, re-
sults in high computational and memory costs. For optimal
trading-off, 5 to 7 is a proper setting for the video clip length
n.

Table 1: Quantitative comparison with semi-supervised
methods using F1 score. Underlines indicate the best re-
sults of individual models.

Model BP4D DISFA MME
Pseudo-label (1%) 54.3 40.4 45.8
Pseudo-label (2%) 57.8 50.8 47.5
Pseudo-label (5%) 59.7 51.5 52.1
Pseudo-label (10%) 60.7 56.8 54.2
Pseudo-label (15%) 61.2 57.1 54.9
Pseudo-label (20%) 62 58.5 55.2
Pseudo-label (50%) 63.6 57.9 55.3
Pseudo-label (60%) 62.7 56.7 55.3
Pseudo-label (70%) 63.3 57.9 55.3
Pseudo-label (80%) 62.4 58.3 56.6
Pseudo-label (90%) 62.3 57.5 55.5
Pseudo-label (100%) 62.7 58.8 56.9
Model BP4D DISFA MME
FixMatch (1%) 49.9 35.6 41.6
FixMatch (2%) 55.1 46.2 46.5
FixMatch (5%) 59.2 52.7 52.6
FixMatch (10%) 60.5 55 55.4
FixMatch (15%) 62.1 57.7 55.6
FixMatch (20%) 62 58.4 56.4
FixMatch (50%) 62 57.9 58.3
FixMatch (60%) 62.1 56 56.4
FixMatch (70%) 61.9 57.8 57.2
FixMatch (80%) 62.2 56.9 55.5
FixMatch (90%) 61.9 57.5 55.3
FixMatch (100%) 62.7 58.8 56.9
Model BP4D DISFA MME
TCL (1%) 55.6 42.3 43.3
TCL (2%) 58.9 51.2 48.2
TCL (5%) 60.5 53.6 53.4
TCL (10%) 61.7 55.8 55.7
TCL (15%) 62.3 56.7 56.2
TCL (20%) 62.7 57.9 55.6
TCL (50%) 63.2 59.2 57.6
TCL (60%) 62.8 60.1 57.9
TCL (70%) 63.0 59.6 57.9
TCL (80%) 62.9 60.4 58.3
TCL (90%) 62.7 58.3 57.8
TCL (100%) 63.1 59.7 58.1
Model BP4D DISFA MME
Our KS (1%) 59.9 49.4 51.2
Our KS (2%) 62.5 52.8 54.8
Our KS (5%) 63.9 56.9 57.6
Our KS (10%) 64.4 58 58.4
Our KS (15%) 64.5 58.8 58.7
Our KS (20%) 64.4 59.5 58.9
Our KS (50%) 64.5 61.6 59.5
Our KS (60%) 64.4 62.9 59.4
Our KS (70%) 64.5 61.9 59.5
Our KS (80%) 64.4 62 59.4
Our KS (90%) 64.6 62.2 59.6
Our KS (100%) 64.7 62.8 59.7

2.4. Effect of the Perturbation-aware Pseudo-
labeling

The module is consisted of two parts including Pseudo-
labeling and a self-supervised module with loss function
Lself . By removing the whole module, we observe the
performance degradation by a margin of 0.8% and 1.0%
on BP4D and DISFA. By only removing Pseudo-labeling,



Table 2: Comparison with state-of-the-art methods using F1 score in terms of individual AUs. The upper part is the F1 score
on BP4D; The bottom part is the F1 score on DISFA. Bold numbers indicate the best performance.

Model Used labels AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.
DSIN 100% 51.7 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 62.9 38.8 41.6 58.9
JAA 100% 47.2 44.0 54.9 77.5 74.6 84.0 86.9 61.9 43.6 60.3 42.7 41.9 60.0
LP 100% 43.4 38.0 54.2 77.1 76.7 83.8 87.2 63.3 45.3 60.5 48.1 54.2 61.0
ARL 100% 45.8 39.8 55.1 75.7 77.2 82.3 86.6 58.8 47.6 62.1 47.4 55.4 55.4
SRERL 100% 46.9 45.3 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 47.1 53.3 62.9
UGN 100% 54.2 46.4 56.8 76.2 76.7 82.4 86.1 64.7 51.2 63.1 48.5 53.6 63.3
HMP-PS 100% 53.1 46.1 56.0 76.5 76.9 82.1 86.4 64.8 51.5 63.0 49.9 54.5 63.4
FAUDT 100% 51.7 49.3 61.0 77.8 79.5 82.9 86.3 67.6 51.9 63.0 43.7 56.3 64.2
Our KS 15% 58.7 50.3 62.0 79.5 75.4 84.9 87.1 65.9 45.5 62.9 48.3 53.3 64.5
Our KS 100% 55.3 48.6 57.1 77.5 81.8 83.3 86.4 62.6 52.3 61.3 51.6 58.3 64.7
Model Used labels AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 Avg.
DSIN 100% 42.4 39.0 68.4 28.6 46.8 70.8 90.4 42.2 53.6
JAA 100% 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0
LP 100% 29.9 24.7 72.7 46.8 49.6 72.9 93.8 65.0 56.9
ARL 100% 43.9 42.1 63.6 41.8 40.0 76.2 95.2 66.8 58.7
SRERL 100% 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9
UGN 100% 43.3 48.1 63.4 49.5 48.2 72.9 90.8 59.0 60.0
HMP-PS 100% 38.0 45.9 65.2 50.9 50.8 76.0 93.3 67.6 61.0
FAUDT 100% 46.1 48.6 72.8 56.7 50.0 72.1 90.8 55.4 61.5
Our KS 15% 41.7 53.5 69.7 41.3 46.2 72.0 92.3 54.0 58.8
Our KS 100% 53.8 59.9 69.2 54.2 50.8 75.8 92.2 46.8 62.8

the F1 score decreases by 0.6% and 0.7%. By replacing
the self-supervised module with the hard threshold as the
standard of confirming high-confident pseudo labels, we ob-
serve a performance drop by a margin of 0.3% and 0.4%. In
addition, we compare the accuracy of pseudo labels gener-
ated by PPL and naı̈ve pseudo-labeling [1] on BP4D using
10% labels. The result shows 76.35% accuracy on PPL and
73.36% on naı̈ve pseudo-labeling. That demonstrates the
performance of PPL improves by filtering the low quality
pseudo labels with temporal perturbation. Another interest-
ing finding is that if we only keep the loss Lself of PPL (not
for label selection), the experimental results are also be re-
duced. That shows the auxiliary task in PPL benefit KS to
learn better feature representation and inter-frame relation
by identifying temporal disturbances.

2.5. Parameter Size Analysis

The trainable parameter size of the proposed model
is around 25 million, which makes KS a very light-
weighted model. Compared with the baseline algo-
rithm EACnet [3], which contains 138 million parameters,
Knowledge-Spreader, as a video-level model, reduces con-
siderable parameter (80%) but achieves excellent perfor-
mance improvement.

3. Dataset

3.1. Participants

233 participants were recruited from our University.
There are 132 females and 101 males, with ages ranging
from 18 to 70 years old. Ethnic/Racial Ancestries include
Asian, Black, Hispanic/Latino, White, and others (e.g., Na-
tive American).
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Figure 4: A sample sequence from our MME. 2D tex-
ture image, 3D mesh model, 3D shaded model, 3D texture
model, thermal image, and physiological signal (respiration
rate, blood pressure, EDA, heart rate) and corresponding
AU occurrence are shown from top to bottom.

3.2. Recording System and Synchronization

Our data collection system consists of a 3D dynamic
imaging camera system, a thermal sensor, a physiological
signal sensor system, and a studio-quality audio recorder.
The system setup and synchronization method are basically
consistent with BP4D+ [6].



Table 3: The stimulus tasks designed for the data collection.

Task ID Activity Target Emotion

1 Have a pleasant chat with the interviewer Happiness
2 Watch a 3D face model of the participant Surprise
3 Watch an audio recording of 911 emergency call Sadness
4 Experience a sudden sound from a horn Startle or Surprise
5 React to a fake news Skeptical
6 Asked to sing an impromptu song Embarrassment
7 Experience physical fear of the threat in a dart game Fear or Nervous
8 Experience the cold feeling by submerging

hands into a bucket with ice water Pain
9 React to the blame from the interviewer Offended or Unpleasant

10 Experience a bad smell from decaying food Disgust

3.3. Emotion Stimulus

Ten tasks were performed to elicit a wide range of spon-
taneous emotion expression (from positive, to neutral, and
to negative) and inter-personal facial action behavior by a
professional interviewer. Table 3 illustrates the detailed de-
scription for the designed tasks.

3.4. Data Organization

Each subject is associated with 10 different emotions and
multi-modal data including the 3D sequence, 2D RGB se-
quence, thermal sequence, and the sequences of physiolog-
ical data (i.e., blood pressure, EDA, heart rate, and respi-
ration rate). The sample sequences of different modalities
from two subjects are shown in Figure 4. Besides, the meta-
data including manually labeled action units occurrence and
intensity, 3D/2D/IR facial landmarks, and 3D head poses
are also generated for better analysis of automatic human
facial action.
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