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In this document, we provide additional materials to sup-
plement our main submission. In Section 1, we introduce
more background on the causal graph and causal interven-
tion. In Section 2, we derive some formulations in detail,
which are omitted in the main paper due to space limi-
tation. In Section 3, we elaborate more details about the
dataset. In Section 4, we provide more details about the im-
plementation of our KPI framework, including the choice
of backbone model, hyper-parameters and training strategy.
In Section 5, we provide more details about the implemen-
tation of knowledge space. In Section 6, we provide more
details about the implementation of video embeddings. In
Section 7, we perform significance test to reveal the stability
of KPI framework. In Section 8, we provide more qualita-
tive examples to testify the effectiveness of KPI framework.

1. Causal Graph and Causal Interventation

1.1. Causal Graph

Causal graph [13] is a high-level road-map indicating
the causal relationship among different variables. Besides,
causal graph is a directed acyclic graph G = {N , E}, where
nodes N represent variables and arrows E represent the
causal relationship between two nodes. For example, in Fig-
ure 1 (a), X → Z indicates that X cause Z , while X 9 Y
indicates there is no direct causal effect from X to Y .

Besides, if a variable C is the common cause of two vari-
ables X ,Y (in Figure 1 (b)), C is called the confounder,
which will induce spurious correlation between X and Y to
disturb the recognition of the causal effect between them.
In particular, such spurious correlation is brought by the
backdoor path created by the confounder. Formally, a back-
door path between X and Y is defined as any path from
X to Y that starts with an arrow pointing into X . For
example, in Figure 1 (b), we use X , Y , and C to repre-
sent the “sales of ice-cream ”, “death from drowning”,
and “season”, respectively. From the causal point of view,
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Figure 1. Three elemental structures in causal graph.

P (Y = y|X = x)− P (Y = y) should be zero, since there
is no causal relationship between “sales of ice-cream ” and
“death from drowning”. However, due to the existence of C,
P (Y = y|X = x)−P (Y = y) is not zero, and spurious cor-
relation is built by the confounder, “season”. Therefore, if
we want to deconfound two variables for the true causal ef-
fect, we should cut the backdoor path between them. In the
abovementioned case, cutting backdoor path can be formu-
lated as P (Y = y|X = x, C = c)− P (Y = y|C = c) = 0

1.2. Elemental Structures

As shown in Figure 1, there are three elemental struc-
tures in causal graph, which construct the whole graph. In
this section, we will introduce some basic rules about them.
Chain, X → Z → Y . In chain structure, Z is the interme-
diate variable to correlate X and Y , which indicates that if
we know the value of Z , X will not give any extra informa-
tion to predict Y . Therefore, if we directly intervene Z as a
specific value, we block this chain structure.
Fork, X ← C → Y . In fork structure, C is the confounder
to produce a backdoor path between X and Y , which would
induce spurious correlation between X and Y . Therefore, if
we directly intervene C as a specific value, the true causal
relationship between X and Y would be revealed.
Collider, X → Z ← Y . In collider structure, variable X
and Y are independent by nature; however, if we know the
value of Z , X and Y will be correlated at once. Therefore,
if we want to study the causal relationship between X and
Y , we should leave the collider structure alone.

These three structures are the elemental structure for a
causal graph and provide us with the basic tool of blocking



paths between two variables. To sum up, if we want to block
two variables within a chain or fork, we should intervene in
the intermediate node, whereas, if we want to block two
variables within a collider, we should do nothing.

1.3. do-calculus

do-calculus P (Y|do(X = x)) is first introduce by [12],
which can be used to represent the causal effect of X on
Y . In this section, we will introduce how the do-calculus
works. Note that we will use do(X ) to represent do(X = x)
in the following sections.

As mentioned in the main submission, do-calculus is a
type of causal intervention, which means that we actively
assign a value to the variable instead of passively observing
it. For example, in Figure 1 (b), do(X ) indicates that we
set the variable X as value x and ignore the cause from its
parent node, i.e., Z 9 X . In brief, while applying do-
calculus to a variable, we cut off all the arrows ending at
this variable. Therefore, when we calculate P (Y|do(X )),
no confounder will cause X and Y , which ensures that the
probability reflects the causal effect.

To derive the probability formula with do-calculus, we
will introduce three rules in [12].

Rule 1. If a variable X is irrelevant to Y , then the prob-
ability distribution of Y will not change:

P (Y|z,X ) = P (Y|z). (1)

Rule 2. If a set Z of variable blocks all backdoor paths
from X to Y , then conditional on Z , do(X ) is equivalent to
observe X :

P (Y|z, do(X )) = P (Y|z,X). (2)

Rule 3. If there are no causal paths from X to Y , do(X )
can be directly removed from P (Y|do(X )):

P (Y|do(X )) = P (Y). (3)

2. Formula Derivations
For convenience, we draw our cause graph and the cor-

responding causal intervention in Figure 2 and write down
the equation for front-door adjustment again, and add some
intermediate steps for the derivation. As shown in Figure 2
(c), the causal intervention for front-door adjustment is split
into two parts,

2.1. Proof of Equation (4)

Equation (4) of the main submission is formulated as

P (z|do(V,Q,H)) = P (z|V,Q,H) = P (z|Q,H).

The first step is because V,Q,H do not have a backdoor
path to z and Rule 2. The section step is due to Rule 3 and
the fact that V does not have the causal path to z.

Figure 2. The causal graph and causal intervention for VideoQA.

2.2. Proof of Equation (5)

Equation (5) of the main submission is formulated as

P (A|do(z))

=
∑
v

∑
q

∑
h

P (A|do(z),q,h,v)P (q,h,v|do(z))

=
∑
v

∑
q

∑
h

P (A|z,q,h,v)P (q,h,v|do(z))

=
∑
v

∑
q

∑
h

P (A|z,q,h,v)P (q,h,v)

=
∑
v

∑
q

∑
h

P (A|z,q,h,v)P (v)P (q|v)P (h|q,v).

The first step is according to the Bayes rules. The second
step is because z does not have backdoor path toA and Rule
2. The third step is because z does not have causal path to
v,q,h and Rule 3. The last step is due to the chain rule of
conditional probability.

2.3. Proof of Formula (7)

Let’s first start with a simple case:

P (Y|X ) =
∑
x

(P (x)P (Y|x))

= Ex[P (Y|x)] = Ex[Softmax(g(x))],

where P (Y|x) is estimated by Softmax(g(x)). By [18], we
can use Weighted Geometric Mean (WGM) to approximate
the expectation Ex[Softmax(g(x))], i.e.,

P (Y|X ) = Ex[Softmax(g(x))] ≈WGM[Softmax(g(x))].

Then let’s show how to apply Weighted Geometric Mean
(WGM) [24] to move the outer expectation into the feature



level. Given the Softmax(g(x)) ∝ exp(g(x)), the weighted
geometric mean (WGM) of P (Y|x) is:

WGM[Softmax(g(x))] =
∏
x

exp(g(x))P (x)

=
∏
x

exp(g(x)P (x)) = exp[
∑
x

g(x)P (x)] = exp[Ex[g(x)]]

Furthermore, to guarantee the sum of P (Y|X ) to be 1, we
normalize the WGM[Softmax(g(x))] as

NWGM[Softmax(g(x))] =
exp[Ex[g(x)]]∑
x exp[Ex[g(x)]]

= Softmax(Ex[g(x)]).

Therefore, the NWGM can be used to approximate the ex-
pectation Ex[Softmax(g(x))] and move the outer expecta-
tion into the feature level.

In Formula (7) of the main submission, we apply the
same approximation and derivation, arriving at

P (A|do(V,Q,H))
= EvE[q|v]E[h|q,v]E[z|Q,H][P (A|v,q,h, z)]
= EvE[q|v]E[h|q,v]E[z|Q,H][Softmax[g(v,q,h, z)]]
≈ Softmax[g(Ev[v],E[q|v][q],E[h|q,v][h],E[z|Q,H][z])].

3. Datasets
3.1. MSVD-QA and MSRVTT-QA

MSVD-QA [22] and MSRVTT-QA [22] are the exten-
sions of two video description datasets, i.e., MSVD [2]
and MSRVTT [23]. Specifically, the question-answer pairs
from these two datasets are generated from video descrip-
tions through an automatic method [22]. For MSVD-
QA and MSRVTT-QA, there are 50K and 243K question-
answer pairs, respectively. Both of these two datasets con-
sist of five different types of questions, including what, who,
how, when, and where. The task is open-ended and aims to
identify the answer from a pre-defined answer set. Note
that since the question-answer pair is generated automati-
cally, there are some questions that correspond to multiple
different answers.

3.2. TGIF-QA

TGIF-QA [8] is a large-scale benchmark dataset for
VideoQA [8], which collect 72K animated GIFs along with
165K question-answer pairs to form four sub-tasks: Count,
Action, Transition, and FrameQA. (1) Repetition count
(Count.) aims to count the number of repetitions of objects
or actions in a video, and the answer is a number; (2) Re-
peating action (Action.) aims to identify a repetitive action
in a video, and the answer is chosen from 5 candidates; (3)
State transition (Transition.) is also a multiple-choice task

which aims to identify the temporal transition of two states,
i.e., actions or activities; (4) Frame QA (FrameQA) aims
to answer a question from a single video frame. This task
is formulated as a classification problem aiming to indicate
the correct answer from a pre-defined set. Considering that
the Count problem is not directly affected by dataset bias,
we mainly focus on the Action, Transition, and FrameQA
sub-tasks in this work.

3.3. NeXT-QA

NeXT-QA [19] is a large-scale human-annotated dataset
for VideoQA [19], which collects 5440 videos from Vi-
dOR [16] along with 100k question-answer pairs. Different
from previous datasets, NeXT-QA aims to advance video
understanding from describing to explaining temporal ac-
tions. To this end, NeXT-QA formulates two sub-task, i.e.,
multi-choice QA and Generative QA, and for each sub-task,
there are three types of questions, including Causal (Why
and How), Temporal (Previous, Present, and Next),
and Description (Binary, Location, Count, and Other).
In this work, we focus on the multi-choice QA sub-task.

3.4. Causal-VidQA

Causal-VidQA [11] is a large-scale dataset for reason-
ing VideoQA, which includes 27k videos from Kinetics-
700 [10]. For each video, there are four types human-
annotated questions, i.e., Description, Explanation, Predic-
tion, and Counterfactual. These four question focus on sim-
ple description (Description), evidence reasoning (Explana-
tion), and commonsense reasoning (Prediction and Counter-
factual). To verify the reasoning ability of existing methods,
Causal-VidQA requires the methods to provide a correct an-
swer and to offer a proper reason justifying why that answer
is correct. Considering that a question may correspond to
more than one rational answers and reasons, Causal-VidQA
is also formulated as multi-choice QA.

4. Implementation Details
For video representation, we extract the motion and ap-

pearance feature using the I3D-ResNeXt-101 [21, 5] and
ResNet-152 [6] with 8 clips per video and 16 frames per
clip. For HQGA [20], which requires the object fea-
tures [15], we follow the setting in HQGA [20] by de-
tecting 20 objects in NExT-QA and 5 objects in other
datasets. For language representation, we follow NExT-
QA [19] and obtain the contextualized word representation
using the fine-tuned BERT model. Note that the initial
results in CoMem [4] and HGA [9] are conducted based
on GloVe [14] feature. Therefore, we reproduce them
with the official code and the contextualized word repre-
sentation. For the size of feature space, we set kV , kQ,
kH as 500, and the actual number of causal concepts de-
cides kZ . For MSVD-QA, MSRVTT-QA, TGIF-Action,



TGIF-Transition, TGIF-FrameQA, NExT-QA, and Causal-
VidQA, kZ are 10,249, 21,612, 18,974, 19,836, 18,856,
24,799, and 25,645, respectively. We set d = 512 for video-
question alignment and train each model 25 epochs with an
initial learning rate of 5e-5. During training, the KPI frame-
work is optimized by Adam optimizer, and the learning rate
is decayed when validation stops improving for 5 epochs.
For other hyper-parameters, we follow the setting in corre-
sponding works.

5. Implementation of Knowledge Space
5.1. Key Words and Phrases

In Sec.4.1 of the main submission (step 1), we have men-
tioned to “extract the key words and phrases from question
and answer”. For the key words and phrase extraction, we
first explore the off-the-shelf NLTK [1] to label the part-of-
speech (POS) tag of each word in questions and answers,
and then select the verb and noun as the key words. Fur-
thermore, based on the POS-tag of each word, we extract
the noun phrase and the verb phrase with pre-defined gram-
mar. For more details, please refer to NLTK [1].

5.2. Knowledge Graph and Knowledge Semantic
Embedding

In our KPI framework, we explore two knowledge
graphs (ConceptNet [17] and Atomic [7]) to filter out the
correlations and select causal relations. ConceptNet [17]
focuses more on physical-entity relations, which is help-
ful to discover entity relations in descriptive questions. Be-
sides, Atomic [7] pays more attention on event-centered and
social-interaction relations, which could contribute more on
evidence and commonsense reasoning.

For ConceptNet [17], the nodes are mainly single words.
Therefore, we directly match the head and tail of each cor-
related concept pair with the node in ConceptNet following
the strategy in Sec.4.1 of main submission (step 4). For
Atomic [7], the nodes include both single words, phrase
and short sentence. In order to use the event-centered and
social-interaction relations within Atomic, we first extract
the key words and phrases (see Section 5.1) from node ni

as node concepts Ni. During the matching process, if the
hi ∈ Np and ti ∈ Nq , where hi − ti is i−th a corre-
lated concept pair and node np and nq are adjacent nodes
in knowledge graph. To ensure the causal concepts are rep-
resentative, we only use the correlated concept pairs, which
appears more than 20 times in the training dataset, during
the matching. Since the causal concepts cannot directly be
used by our method, we 1) concatenate the head, tail, and
relation of each causal concept together, 2) use a pre-trained
BERT [3] to get the contextualized word representation, 3)
average the contextualized word representation along word
dimension to get the knowledge semantic embeddings.

6. Implementation of Video Embeddings
In Sections 4.2 and 4.3 of the main submission, we

exploit the self-attention layer along with average-pooling
layer to get the video embeddings. In this section, we will
provide more details about the implementation.

Given a video, we extract the motion features Vm ∈
Rnvm×dv , appearance features Va ∈ Rnva×dv , and ob-
ject features Vo ∈ Rnvo×dv using the I3D-ResNeXt-
101 [21, 5], ResNet-152 [6], and Faster-RCNN with
ResNet-152 [15], respectively, where dv = 2048 and
nvm , nva , nvo are decided by datasets. The motion features
Vm, appearance features Va, and object features Va are
gathered together as the video features V . For each video
sub-features V∗ ∈ [Vm,Va,Vo] from video features V ,
the self-attention layer along with average-pooling layer is
formulated as

Vsa
∗ = Softmax(

V∗W1(V∗W2)
T

√
dv

)V∗W3,

Vout
∗ = LayerNorm(Vsa

∗ +V∗)Wout

v∗ = AveragePool(V out
∗ ),

where v∗ ∈ Rdv represent the video sub-embeddings, and
W1,W2,W3,Wout are trainable parameters.

7. Significance Test
We perform the significance test towards the improve-

ment between our KPI framework and HQGA [20] on
MSVD-QA [22] and NeXT-QA [19]. On MSVD-QA and
NeXT-QA datasets, we run HQGA equipped with KPI
framework ten times with random seeds ranging from 1 to
10. The improvement beyond original HQGA are 2.1 ±
4 × 10−1 and 3.2 ± 4 × 10−1 in terms of accuracy. At the
significance level of 0.05, we perform a significance test to
verify that our KPI framework can stably boost the original
HQGA. The p-values of the improvements are 7.37× 10−8

and 1.81×10−9, which is far below 0.05, demonstrating the
superiority of our KPI framework is statistically significant.

8. More Qualitative Examples
In Figure 3, we inspect the predictive answer of three dif-

ferent video instances along with two different questions,
and the top attended causal concepts based on each video
and question. We observe that, for the same video and dif-
ferent questions, our model is capable of retrieving differ-
ent causal concepts, which reveals that our framework is
capable of achieving the two aforementioned requirements,
i.e., (1) emphasize the knowledge from the question and the
aligned features; (2) collect the causal concepts for answer
prediction. However, as shown in the last video example,
our model may also fail to capture the useful causal con-
cepts from the knowledge space. We suspect that this fail-



A: sit up then roll back 
     play with the hand 
     watch the water flow
     follow the string
     walk past

Top Z: <tap-ObjectUse-get water>

            <sink-isFilledBy-water>

            <cat-AtLocation-sink>

            <sink-ObjectUse-drain water>

            <eye-RelatedTo-watch>


Q: What did the cat do after jumped into the sink with water?

A: park 
     room 
     museum 
     farm 
     workplace

Top Z: <airplane-AtLocation-hanger>

            <airplane-AtLocation-base>

            <airplane-AtLocation-sky>

            <warehouse-RelatedTo-roof>

            <airplane-ObjectUse-land>


Q: Where could this be happening?

A: on the right

     swimming

     lick baby's hand

     playing with sticks

     play with ball

Top Z: <dog-CapableOf-swim>

            <water-ObjectUse-feed dog>

            <swim-RelatedTo-water>

            <water-ObjectUse-wash dog>

            <person-xWant-play with dog>


Q: What is the dog doing?

A: attack black dog
     keep warm
     snatched the bone
     stay afloat
     want to join in

Top Z: <vest-ObjectUse-keep safe>

            <swim-RelatedTo-water>

            <lifevest-ObjectUse-float in water>

            <dog-CapableOf-swim>

            <vest-ObjectUse-protect body>


Q: Why does the black dog have a blue vest around it s body?

A: drink water
     distracted by something
     follow the toy

     sleepy

     dry face

Q: Why is the cat shaking its head at the end of the video?

Top Z: <head-MannerOf-shake>
            <water-Cause-wet>
            <shake-RelatedTo-water>
            <shake head-xIntend-remove water>
            <cat-AtLocation-sink>

A: work
     moving his body
     forgot to be closed

     presents wrappers

     display for exhibition

Top Z: <airplane-ObjectUse-land>

            <work-RelatedTo-indoors>

            <airplane-ObjectUse-travel>

               <worker-CapableOf-repair>

            <repair-xNeed-follow instruction>


Q: Why is the big silver aeroplane at an indoor space?

Figure 3. The visualization of three VideoQA cases from NExT-QA [19]. Top Z indicates the causal concepts from Z with the top-5 highest
attention weight. Predicted answers are highlighted in boldface. Correct (resp. Wrong) answers are highlighted in green (resp. red)

ure case is due to these two reasons: (1) the causal concepts
within the knowledge space cannot link the airplane with
the exhibition, and (2) the environment in the video does

not have obvious characters about museum and exhibition,
which make the causal concepts searching and answer pre-
diction extremely hard.
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