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The supplementary material contains: 1) the detailed

network architecture used in our method; 2) more details

about the evaluation; 3) more training details; 4) the demo

video consisting of several qualitative examples for point

tracking.

1. Network Architecture
Backbone. Following the prior studies [4, 9, 11], we

use the modified ResNet [3] architecture as our backbone,

which is illustrated in Table 1. The res5 layer along with

the stride in res4, is removed to get the feature maps with a

resolution of 1/8 of the original video resolution. We set the

stride of the encoder θ to 2 by further removing the pool1
and the stride in res3 to get more fine-grained features.

Self-attention and Cross-attention Layers. In our

coarse-to-fine framework, after the coarse-grained features

extraction, we send the coarse features F ↓
1 , F

↓
2 to the self-

attention and cross-attention layers, inspired by the recent

Table 1: Network Architecture of the modified ResNet-18 [3].

The residual blocks are shown in brackets and the kernel size of

each convolution is presented followed by the output channels.

Stage Network Output size

data - 3× 2562

conv1 7× 7, 64, stride 2 64× 1282

pool1 3× 3, 64, stride 2 64× 642

res2

[
3× 3, 64
3× 3, 64

]
× 2, stride 1 64× 642

res3

[
3× 3, 128
3× 3, 128

]
× 2, stride 2 128× 322

res4

[
3× 3, 256
3× 3, 256

]
× 2, stride 1 256× 322

ResBlock

ResBlock

Interpolation

ResBlock

ResBlock

Interpolation

Figure 1: Illustration of the up-sampling layer.

studies [7,10] introducing the transformer modules to trans-

form the features into representations that are easy to match.

Formally, the attention layer is denoted as:

Attention(Q,K, V ) = softmax
(
QKT

)
V . (1)

For self-attention layer, the input features are the same

for Q/K/V , while in the cross attention layer, the input

features for Q can be either F ↓
1 or F ↓

2 , and the input features

for K/V are F ↓
1 (when Q is F ↓

2 ) or F ↓
2 (when Q is F ↓

1 ).

We follow the Linear Transformer [5] proposed to reduce

the computational cost of transformer by substituting the

exponential kernel, and we set the number of the head to 8

for the feature dimension of 256. Besides, we sequentially

interleave the self and cross attention layers in our coars-to-

fine framework by 2 times.

Up-sampling. In Figure 1, we illustrate the detailed ar-

chitecture of the up-sampling layer which consists of sev-

eral residual blocks [3] and interpolation modules. Note the

first interpolation module is performed in the channel di-

mension, and the latter one is performed over space.

2. More details about evaluation
Following previous works [4, 9, 11], all evaluation tasks

are cast as video label propagation. This involves mak-

ing predictions for target pixels in current frames, based

solely on the ground-truth annotation for the first frame. We

leverage the model as a similarity function to make predic-

tions using k-nearest neighbors. This is a natural choice

given the learned representations to align with prior re-

search for ensuring fair comparisons. Specifically, given

the labels Li ∈ R
N×D at the frame i (D represents the



number of target pixels or semantic masks), and encoded

features Fi, Fj ∈ R
N×C . We obtain the probabilistic map

Pj→i ∈ R
N×(2r+1)2 within a local range r. We take the

common practice in [4, 9, 11] to utilize the k-nearest neigh-

bor for selecting top-k indexes of values in Pj→i(·|q) ∈
R

(2r+1)2 for each query q. Then the we obtain the se-

lected P̂j→i ∈ R
N×k and labels L̂i ∈ R

k×D. The pre-

dictions Lj ∈ R
N×D on the frame j can be computed

as Lj = P̂j→iL̂i. Moreover, we adopt a queue of con-

text frames (memory bank) for propagation as is commonly

done in previous studies, where the set of pixels of the pre-

vious m frames, are utilized for auto-regressive propaga-

tion. In our experiments of point tracking on three newly

included datasets [1, 2], we set the r, k, and m to 24, 10,

and 5 for all feature-matching-based methods with a stride

of 2, and reduce the r to 18/12 for stride of 4/8.

3. More training details

The training of the coarse-to-fine framework is only per-

formed on the real-world dataset YouTube-VOS [12] with a

batchsize of 32, which takes 90k iterations to converge. The

initial learning rate is set to 1e-3 with a cosine (half-period)

learning rate schedule. In the training process, we regard

the encoder θ learned before as the teacher, and we leverage

the fine-grained probabilistic maps produced by the encoder

θ as pseudo labels for the objective function LKL. We per-

form all experiments on 4 GTX-3090 GPUs.

4. Qualitative examples for point tracking

We select several representative video clips on TAP-

Vid-DAVIS [2] to verify the effectiveness of our method

compared with state-of-the-art methods which provide the

code and pre-trained models, e.g., VFS [11], MAST [6]

and RAFT [8]. Please refer to the video demo in https:
//www.youtube.com/watch?v=2ZCVUoiyM0U for

video-wise qualitative comparisons. Without fine-tuning

our pre-trained model on any additional dataset, we propa-

gate the points of the first frame to the current frame. As

observed in the enclosed video, the results produced by

our method show clear improvements over state-of-the-art

methods. The predictions of our method tend to have more

accurate and smooth trajectories even facing severe tempo-

ral discontinuity, e.g., appearance changes, large motion,

and deformations. These examples again verify the effec-

tiveness of our method.
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