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1. Detailed Derivation
In this section, we present the entire derivation from the

objective in Eq.(4) to the final IB loss function in Eq.(6) in
the main manuscript.

As mentioned in the main manuscript, the entire objec-
tive is:

min[I(v; y)− I(z; y) + I(v; z)− I(z; y)]. (1)

According to the definition of mutual information, I(v; y)
can be rewritten as:

I(v; y) = H(y)−H(y|v), (2)

where H(y) is the information entropy of y and H(y|v) is
the conditional entropy of y given v. Similarly, we can have:

I(z; y) = H(y)−H(y|z), (3)

I(v; z) = H(z)−H(z|v), (4)

I(z; y) = I(y; z) = H(z)−H(z|y). (5)

Substituting Eq.(2)-(5) to Eq.(1), the objective can be ex-
pressed in the form of conditional entropy as:

min[H(y|z)−H(y|v) +H(z|y)−H(z|v)]. (6)

According to the definition of conditional entropy, H(a|b)
means the uncertainty of a with b known. Note that z is
derived from v. In other words, z contains no information
that v does not have. Therefore, H(z|v) should be equal to
zero. Thus we have Eq.(6) as:

min[H(y|z)−H(y|v) +H(z|y)]. (7)

According to the definition of information entropy,

H(y|z) = −
∑
z∈Z

p(z)
∑
y∈Y

p(y|z) log p(y|z)

= −
∑
z∈Z

p(z)
∑
y∈Y

p(y|z) log
[
p(y|z)
p(y|v)

p(y|v)
]
,

(8)

By factorizing it, we have:

−
∑
z∈Z

p(z)
∑
y∈Y

p(y|z) log
[
p(y|z)
p(y|v)

p(y|v)
]
=

−
∑
z∈Z

∑
y∈Y

p(z)p(y|z) log
[
p(y|z)
p(y|v)

]
︸ ︷︷ ︸

Z1

−
∑
z∈Z

∑
y∈Y

p(z)p(y|z) log p(y|v)︸ ︷︷ ︸
Z2

.

(9)

Similarly, for H(y|v) we have:

−
∑
v∈V

p(v)
∑
y∈Y

p(y|v) log
[
p(y|v)
p(y|z)

p(y|z)
]
=

−
∑
v∈V

∑
y∈Y

p(v)p(y|v) log
[
p(y|v)
p(y|z)

]
︸ ︷︷ ︸

V1

−
∑
v∈V

∑
y∈Y

p(v)p(y|v) log p(y|z)︸ ︷︷ ︸
V2

.

(10)

According to [6], integrate term Z1 and V1 and we have:

Z1 =
∑
z∈Z

p(z)DKL[p(y|z)||p(y|v)], (11)

V1 =
∑
v∈V

p(v)DKL[p(y|v)||p(y|z)], (12)

where DKL is the relative entropy, i.e., Kullback-Leibler
(KL) divergence. Meanwhile, according to the definition of
information entropy, Z2 and V2 can be written as:

Z2 =
∑
y∈Y

p(y) log p(y|v), (13)

V2 =
∑
y∈Y

p(y) log p(y|z). (14)



In classification, the sum of probabilities equals to 1, there-
fore, combining Eq.(11)-(14), we have:

H(y|z)−H(y|v) +H(z|y)
=− (Z1 + Z2) + (V1 + V2) +H(z|y)

=−DKL[p(y|z)∥p(y|v)]−
∑
y∈Y

p(y) log p(y|v)

+DKL[p(y|v)∥p(y|z)] +
∑
y∈Y

p(y) log p(y|z)

+H(z, y)−H(y).
(15)

Based on the definition of conditional entropy and the non-
negativity of entropy, we have:

H(y|z)−H(y|v) +H(z|y)

≤DKL [Pv∥Pz] + log

[
Pz

Pv

]
+H(z, y)−H(y)

≤DKL[Pv∥Pz] + log

[
Pz

Pv

]
+H(z, y),

(16)
where Pv = p(y|v) and Pz = p(y|z), and H(z, y) is the
joint entropy of z and y. Similarly to the mutual informa-
tion, calculating the joint entropy in high-dimension is also
hard to achieve. As we tend to optimize the inequality in
Eq.(16), there is no need to calculate H(z, y) precisely. Re-
member z and y are not mutually independent. Since the
distribution of the label y is determined, a viable way to
minimize H(z, y) revolves around steering the distribution
of z towards alignment with y. It can be effectively trans-
formed into an optimization scenario for the classification
task, where the prediction and the ground truth are z and y,
respectively. In this way, by minimizing the KL divergence
from Pv to Pz and the cross entropy between z and y, the
terms in Eq.(16) are approaching 0, and we can accomplish
the goal of minimizing the objective in Eq.(1). In practice,
the former can be achieved by the KLD loss LKLD and the
latter is the commonly seen cross-entropy loss Lce. Con-
sequently, we have the IB loss for optimizing the network
as:

LIB = LKLD(Pv||Pz) + Lce(z, y). (17)

2. More Results and Ablation Studies

In this section, we extend our performance comparison
and the ablation study from more aspects. First, to demon-
strate the generalization ability of our method, we give the
result on the testing set of IsoGD [9, 8] and compare it with
some methods which report their performance on it. Then
we analyze the effect of different values of the key parame-
ters for the memory network, such as the number of memory
slots and the temperature parameter τ .

Method Modality Accuary(%)
Wan et al. [7] RGB+D 24.19
Zhu et al. [13] RGB+D 50.93

Wang [11] depth 55.57
Li et al. [2] RGB+D 56.90
Li et al. [3] RGB+D+Saliency 59.43

Zhang et al. [12] RGB+D 60.47
Wang et al. [10] RGB+D 65.59
Duan et al. [1] RGB+D+OF* 67.26
Miao et al. [5] RGB+D+OF 67.71
Lin et al. [4] RGB+D+Skeleton 68.42

Ours
RGB 72.52
depth 70.37

RGB+D 75.20
* OF=Optical flow.

Table 1. Comparison with SOTAs on Chalearn IsoGD Dataset.

Num. of slots 1 3 5 7 9

Acc(%) RGB 83.33 87.50 87.08 87.91 88.33
depth 75.83 80.41 82.91 82.08 83.33

Table 2. Performance comparison on different numbers of slots.

2.1. Performance on the testing set of IsoGD dataset

To verify the generalization ability of the proposed
method, we further evaluate it on the testing set of the
IsoGD dataset. We use the same parameter settings as those
for the validation set presented in the paper. We also present
a comparison with other methods. As the mainstream is to
evaluate on the validation set, most methods are from two
rounds of the challenge [8], and report the RGB+D fusion
result. As shown in Table 1, our network achieves a similar
result as that on the validation set. Compared with the other
methods, it can still make a significant breakthrough even
only with single modality of data.

2.2. Effect of parameter settings

This section verifies the parameters in the proposed
method, mainly related to the memory network. For sim-
plicity and to ensure consistency with the settings in the
main manuscript, all experiments in this section are con-
ducted on THU-READ(CS3).

2.2.1 Different number of memory slots

We present a comparison to investigate how the number of
memory slots affects recognition performance, and the re-
sults are presented in Table 2. The setting adopted in this
paper is bold. As can be seen, the performance becomes
poor when only one memory slot is used. This is because
with only one slot, the memory network does not work, and
it can be degraded into a simple averaging scheme, which
adversely affects performance. With an increase in the num-



value of τ 5 10 20 30 40 50

Acc(%) RGB 87.50 87.08 87.91 88.33 86.25 83.33
depth 82.50 82.91 82.08 80.00 77.50 76.25

Table 3. Performance comparison on different values of tempera-
ture parameter.

ber of memory slots, there is a corresponding improvement
in performance that eventually stabilizes. After the num-
ber of memory slots reaches 5, the performance fluctuates
around 1%, indicating that further increasing the number
of memory slots does not provide significant improvements
in performance. However, it still results in an increase in
the amount of storage space required for memory. To strike
a balance between performance and computational burden,
we set the number of memory slots to 5.

2.2.2 Temperature parameter settings

Table 3 illustrates the changes in performance when varying
the value of temperature parameter τ . The setting adopted
in this paper is also bold. Generally, it shows that a larger
value of τ decreases the performance. According to Eq.(14)
in the main manuscript, excessively high values of τ can
lead to a bias towards one specific memory slot, which is
somewhat like the one-slot condition illustrated in Table 2,
thereby the effectiveness of addressing is weakened, and the
performance decreases accordingly.
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