
Learning to Distill Global Representation for Sparse-View CT
—Supplementary Material—

Abstract

This Supplementary Material includes four parts: (1)
more ablation study and analysis, (2) efficiency, (3) more
visualization results, and (4) network architecture.

1. More Ablation Study and Analysis
1.1. Ablation on Framework Design
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Figure S1. Framework designs of GloReDi: (a) GloReDi-S:
shared decoder for student and teacher networks, which is opti-
mized twice per iteration; (b) GloReDi-P: separate parallel de-
coders for student and teacher; and (c) GloReDi-E: teacher de-
coder is updated via EMA according to student decoder. For sim-
plicity, we name GloReDi-E trained without distillation loss as
GloReDi-N for comparison.

Table S1 presents the experimental results of different
framework designs employed in GloReDi, as illustrated in
Fig. S1. We found that the parallel decoder design failed
to align the representations of different views into a shared
latent space, thus, leading to suboptimal results. The re-
sult of GloReDi-P is even worse than GloReDi-N, reveal-
ing that the domain gap between various views can harm
the training. Although the utilization of a shared decoder
can enforce the representation to be in the same latent space
and outperform GloReDi-P, it could also introduce unstable
problems during training, for the parameters of the shared
decoder are updated twice in an iteration. By contrast,
GloReDi-E achieves the alignment of representations in a
shared latent space through an exponential moving average
(EMA) update procedure, thereby circumventing interfer-
ence with student training. The resultant teacher encoder
can be considered a stable version of the student encoder,
making the teacher GloRe a dependable distillation target.

Therefore, we choose GloReDi-E as our final framework
design.

GloReDi -N -P -S -E
PSNR 37.91 37.85 38.04 38.38

Table S1. PSNR evaluation of GloReDi with different framework
designs. All networks are trained under Nv = 18 for 60 epochs.

1.2. Ablation on Configurations of Residual Blocks

config. e5d4 e6d3 e7d2 e8d1
Nv = 18 37.49 37.62 38.06 38.02
Nv = 72 43.75 43.90 44.39 44.08

Table S2. PSNR evaluation of GloReDi with varied numbers of
FFC residual blocks in the encoder and decoder. (e.g., e5d4 rep-
resents 5 and 4 FFC residual blocks in the encoder and decoder,
respectively). All models are trained for 40 epochs considering
the computational cost.

Given fixed parameters, a larger encoder can improve
the information extraction and recovery process and better
bridge the domain gap between the sparse- and denser-view
images. In the meantime, a larger decoder can better de-
code the global representation and improve the reconstruc-
tion quality. Table S2 presents the quantitative results of
varying numbers of FFC residual blocks in the encoder and
decoder. The results suggest that a ratio of 7 : 2 for 9 resid-
ual blocks in the encoder and decoder is the most favorable
for distillation.

1.3. Ablation on Distillation Loss

config. ℓ1 loss ℓ2 loss (ours)
Nv = 18 37.44 37.29 38.06
Nv = 72 42.88 42.56 44.39

Table S3. PSNR evaluation of GloReDi trained with different dis-
tillation loss, including ℓ1 loss and ℓ2 loss commonly used in
knowledge distillation, as well as the proposed one with Lrdd and
Lbcd. All models are trained for 40 epochs considering the com-
putational cost.

Table S3 exhibits the results of GloReDi trained with
different distillation loss. Our findings suggest that pixel-
wise distillation losses, such as ℓ1 and ℓ2 loss, are not as
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effective as the proposed one. This is attributed to the fact
that conventional distillation tasks involve both the student
and teacher networks sharing the same input and ground
truth. Consequently, the domain gap does not affect them.
However, for sparse-view CT reconstruction, it is arduous
for the student to recover the missing information entirely.
This renders pixel-wise losses too abrupt for distillation pur-
poses.

1.4. Ablation on Band-pass-specific Contrastive
Distillation

We have demonstrated the effective components by
training GloReDi with Lbcd on specific frequency compo-
nents. However, various methods exist to split the frequency
components [1–4]. Note that in 2D discrete cosine trans-
form, low-frequency components are placed on the upper
left. We define the mask M ∈ {0, 1}Nw×Nh as follows to
select the target components:

Mi,j =

{
1, if i∈ [blowNw, bupNw] and j∈ [blowNh, bupNh]

0, otherwise,
(1)

where Mi,j is the element in M at position (i, j); blow and
bup denote the hand-craft ratios defining the lower and up-
per bounds, respectively, which range from [0, 1]. We then
split the DCT spectrum into five groups, demarcated by
the intervals [blow, bup], as illustrated in Fig. S2. Notably,
the model distilled via the vanilla supervised contrastive
loss served as the baseline for our comparative analysis and
was denoted by the black horizontal line in Fig. S2. Ob-
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Figure S2. The effect of different frequency components. Note
that the black horizontal line represents the contrastive distillation
without projecting the representation to the DCT domain. The
models are trained with Lbcd only for 60 epochs.

viously, models trained with frequency components, except
for the lowest and highest, perform better than vanilla ones,
demonstrating that selecting band-pass components is ef-
fective. In addition, middle groups perform relatively better

among different groups, demonstrating the effectiveness of
the selected band-pass-specific components. Therefore, we
select [blow, bup] = [0.2, 0.5] to train our final models to
balance the performance and memory usage.

2. Efficiency

Methods DDNet FBPConvNet DuDoNet DDPTrans DuDoTrans GloReDi
mem. (MB) 86.4 274.9 2150.1 7220.3 3108.5 798.8
infer. (ms) 14.7 11.7 49.6 71.3 78.4 33.1

Table S4. Peak memory usage and mean inference time on a single
RTX 3090 GPU using 1000 images, with a batch size of 1, at a
resolution of 256× 256.

Table S4 presents the peak memory usage (mem.) and
mean inference time (infer.) assessed on a single RTX 3090
GPU with a batch size of 1, averaging over 1000 images at
a resolution of 256 × 256. Overall, dual-domain methods
exhibit lower efficiency compared to image post-processing
techniques. Transformer-based methods are suboptimal in
both memory usage and inference time to those built with
CNN. In contrast, GloReDi demonstrates comparable per-
formance to other post-processing methods while achieving
higher efficiency than dual-domain approaches by eliminat-
ing the need for the teacher network during inference.

3. More Visualization Results
Fig. S3 presents the visualization results of six groups

of sparse-view images. Among all the methods, GloReDi
better recovers the clinical details such as the lung trachea
in the first row, the round soft tissue in the second row, and
the clear boundary highlighted in the fifth row.

Fig. S4 shows another four images in the AAPM dataset.
We note that in ultra-sparse scenarios when NV = 18, 36
as shown in the first and the second rows, only GloReDi
precisely reconstructs the structure highlighted by the blue
box. When NV = 72, GloReDi achieves competitive per-
formance compared with DuDoTrans but without using the
sinogram data.

4. Network Architecture
Tables S5 and S6 show the detailed network architecture

of the encoder and decoder, respectively.
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Figure S3. Visual comparison of state-of-the-art methods on DeepLesion dataset: (a) Ground Truth, (b) FBP, (c) DDNet, (d) FBPConvNet,
(e) DuDoNet, (f) DDPTrans, (g) DuDoTrans, and (h) GloReDi. From top to bottom: the results under Nv = 18, 36, 36, 72, 72, 144;
display window is set to [-1000, 2000] HU for the first and the second rows, and [-200, 300] HU for the rests.
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Figure S4. Visual comparison of state-of-the-art methods on AAPM dataset: (a) Ground Truth, (b) FBP, (c) DDNet, (d) FBPConvNet, (e)
DuDoNet, (f) DDPTrans, (g) DuDoTrans, and (h) GloReDi. From top to bottom: the results under Nv = 18, 36, 72, 72; display window
is set to [-1000, 2000] HU for the first row, [-1000, 1000]HU for the second row and [-200, 300] HU for the third and fourth row.



Name Channels Description
Input 2 sparse-view images IS or IT
Rpad0 2 reflectionpad2d((3,3,3,3))

Down1 64 K7C64S1P1-BN-ReLU

Down2 128 K3C128S2P1-BN-ReLU

FFC-Split ×m 256
local branch: K3C64S2P1-BN-ReLU

global branch: K3C192S2P1-BN-ReLU

FFC-1 ×m 256

convl2l: K3C64S1P1

convl2g: K3C192S1P1

convg2l: K3C64S1P1

convg2g: K1C96S1-bn-relu-FFT-K1C192S1-iFFT-K1C192S1

local branch: BN-ReLU

global branch: BN-ReLU

FFC-2 ×m 256

convl2l: K3C64S1P1

convl2g: K3C192S1P1

convg2l: K3C64S1P1

convg2g: K1C96S1-bn-relu-FFT-K1C192S1-iFFT-K1C192S1

local branch: BN-ReLU

global branch: BN-ReLU

FFC-Cat ×m 256 concat(local branch, global branch) w/ residual learning

Table S5. Network architecture of student and teacher encoder. We use ‘K-C-S-P’ to denote the kernel, channel, stride, and padding
configuration of convolution layers.



Name Channels Description

FFC-Split ×n 256
local branch: K3C64S2P1-BN-ReLU

global branch: K3C192S2P1-BN-ReLU

FFC-1 ×n 256

convl2l: K3C64S1P1

convl2g: K3C192S1P1

convg2l: K3C64S1P1

convg2g: K1C96S1-bn-relu-FFT-K1C192S1-iFFT-K1C192S1

local branch: BN-ReLU

global branch: BN-ReLU

FFC-2 ×n 256

convl2l: K3C64S1P1

convl2g: K3C192S1P1

convg2l: K3C64S1P1

convg2g: K1C96S1-bn-relu-FFT-K1C192S1-iFFT-K1C192S1

local branch: BN-ReLU

global branch: BN-ReLU

FFC-Cat ×n 256 concat(local branch, global branch) w/ residual learning

Up1 128 ConvTranspose2d: K3C128S2P1-BN-ReLU

Up2 64 ConvTranspose2d: K3C64S2P1-BN-ReLU

Rpad1 64 reflectionpad2d((3,3,3,3))

Out 1 K7C1S1

Table S6. Network architecture of the shared decoder. We use ‘K-C-S-P’ to denote the kernel, channel, stride, and padding configuration
of convolution layers.
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