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In this document, we first provide the pseudo code of
LOGICSEG in §A. We next show the detailed label hierarchy
for each dataset in §B. In addition, we offer more qualitative
results in §C. Finally, we discuss the limitations and border
impact of our algorithm in §D and §E, respectively. To
ensure reproducibility and foster future research, our full
implementation will be released after acceptance.

A. Pseudo Code
To facilitate a comprehensive understanding of LOGIC-

SEG, we provide pseudo code for the logic-induced infer-
ence (§3) of LOGICSEG in Algorithm S1 and Algorithm S2,
respectively. It can be seen that all the message creation pro-
cesses are implemented in matrix operation which can enjoy
the acceleration of the parallel architecture of GPUs. The
for-loop is merely adopted in Algorithm S1 when normal-
izing or summarizing the prediction in a level-wise manner,
with O(n) time complexity.

B. Label Hierarchy
For Mapillary Vistas 2.0[1] and Cityscapes[2] datasets,

we adopt the officially provided label hierarchies follow-
ing[3]. For Pascal-Part-108[4], we use the hierarchy defined
in [5, 6]. For ADE20K[7], we organize a three-level label hi-
erarchy by considering the semantic relations between labels
according to the WordNet[8]. The detailed label hierarchies
for each datasets are provided in Fig.S1-S4.

C. More Qualitative Comparison Result
We provide more visual results that compare LOGICSEG

to Mask2Former[9] and to DeeplabV3+[10] in Fig.S5-S6
and Fig.S7-S8, respectively. It can be observed that LOG-
ICSEG performs robust in hard cases and can consistently
deliver more satisfying results compared with the baseline
algorithms.

D. Limitation
Currently our algorithm is specifically designed for tree-

shape label hierarchy. It is interesting to extend our algorithm

to handle more complicated and real-world semantic struc-
tures, for example, parent classes sharing some child classes.
We leave this as a part of our future work.

E. Border Impact
This paper contributes to research on intelligent scene

understanding, and thus is expected to eventually benefit
automatic driving, education, health care, and economic de-
velopment of the human society. Moreover, although our
algorithm is able to parse the hierarchical relations between
semantic concepts and yields improved performance over
current top-leading competitors, the relevant security mea-
sures still need to be erected and caution should always be
exercised.

https://github.com/lingorX/LogicSeg/


Algorithm S1 Pseudo-code for logic-induced inference of
LOGICSEG in a PyTorch-like style (Part I).

"""
T: index matrix indicates the hierarchy, for example:

a a b c d e f
/ \ a 0 1 1 0 0 0
b c --> b 0 0 0 1 1 0
/\ \ c 0 0 0 0 0 1
d e f

P: matrix indicates the peer relation, for example:
a b c d e f

a a 0 0 0 0 0 0
/ \ b 0 0 1 0 0 0
b c --> c 0 1 0 0 0 0
/\ \ d 0 0 0 0 1 1
d e f e 0 0 0 1 0 1

f 0 0 0 1 1 0
V: array stores the class number in each

hierarchical level, V[l] = |Vl+1|
R: round of message passing
L: number of hierarchical level
s_k: grounded predicates (|V| x HW)
"""

def message passing(s_k):
s_k += c score(s_k) + d score(s_k) + e score(s_k)
# hierarchical level-wise normalization
n = 0
for l in range(L, 0, -1):

s_k[n:n+V[l]] = s_k[n:n+V[l]].softmax(dim=0)
n += V[l]

return s_k

def inference(s_k):
# R times of message passing
for t in range(R):

s_k = message passing(s_k)

# (N_p x |V| x 1)*(1 x |V| x HW)
s_f = T.unsqueeze(-1) * s_k.unsqueeze(0)
n = V[L-1]
t_s = s_f[:V[L-1]]
#---------top-scoring path (Eq. 18)----------#
for l in range(L-2, -1, -1):

t_s = t_s.unsqueeze(1)
# (|Vl| x |V| x HW) + (|Vl| x 1 x HW)
t_s = (s_f[n:n+V[l]] + t_s)

# (|Vl| x |V| x HW) --> (|V| x HW)
t_s = t_s*(T[n:n+V[l]].unsqeeze(-1)).sum(0)
n += V[l]

# (|Vl−1| x HW)
t_s = t_s[n:n+V[l-1]]

# (|V1| x HW) --> (HW)
pred = t_s.argmax(dim=0)

return pred

Algorithm S2 Pseudo-code for logic-induced inference of
LOGICSEG in a PyTorch-like style (Part II).

"""
N_p: class number of non-leaf nodes
s_k: grounded predicates (|V| x HW)
"""
def c score(s_k):

#-------------C-message (Eq. 16)-------------#
# (N_p x |V| x 1)*(1 x |V| x HW)
c_f = T.unsqueeze(-1) * s_k.unsqueeze(0)
# (N_p x 1 x HW)*(N_p x |V| x HW)
c_m = s_k[:N_p].unsqueeze(1) * c_f
# 1−sk[v]+sk[v]·sk[pv]
c_m = 1 - c_f + c_m

#-----gather received C-messages (Eq. 17)----#
# (N_p x HW)
c_s = (c_f * c_m).sum(dim=1)
c_s = c_s / T.sum(dim=1).unsqueeze(-1)
# (|V| x HW)
c = torch.zeros(|V|, HW)
c[:N_p, :] = c_s

return c

def d score(s_k):
#-------------D-message (Eq. 16)-------------#
# (N_p x |V| x 1)*(1 x |V| x HW)
d_f = T.unsqueeze(-1) * s_k.unsqueeze(0)
# (N_p x HW)*(N_p x HW)
d_m = s_k[:N_p] * d_f.max(dim=1)
# 1−sk[v]+sk[v]·max({sk[c

n
v ]}n)

d_m = 1-s_k[:N_p] + d_m

#-----gather received D-messages (Eq. 17)----#
# (N_p x HW)x(N_p x HW)
d_s = s_k[:N_p] * d_m
# (N_p x 1 x HW)*(N_p x |V| x 1)
d_s = d_s.unsqueeze(1) * T.unsqueeze(-1)
# (|V| x HW)
d_s = d_s.sum(dim=0)

return d_s

def e score(s_k):
#-------------E-message (Eq. 16)-------------#
# (|V| x |V| x 1)*(1 x |V| x HW)
e_f = P.unsqueeze(-1) * s_k.unsqueeze(0)
# (|V| x 1 x HW)*(|V| x |V| x HW)
e_m = s_k.unsqueeze(1) * e_f

# − (1− 1
M

∑M
m=1sk[v] ·sk[a

m
v ])

e_m = -1+e_m.sum(dim=1)/P.sum(dim=1).unsqueeze(-1)

#-----gather received E-messages (Eq. 17)----#
# (|V| x HW)
e_s = e_f.sum(dim=1) / P.sum(dim=1).unsqueeze(-1)
# E-message should be same for all nodes in the

same hierarchical level
e_s = e_m * e_s

return e_s
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Figure S1: Hierarchical label structure of Mapillary Vistas 2.0[1].
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Figure S2: Hierarchical label structure of Cityscapes[2].
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Figure S3: Hierarchical label structure of Pascal-Part-108[4].
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Figure S4: Hierarchical label structure of ADE20K[7].



Figure S5: Visual comparison results on Mapillary Vistas 2.0[1] val. Top: Mask2Fomer[9] vs. Bottom: LOGICSEG



Figure S6: Visual comparison results on Cityscapes[2] val. Top: Mask2Fomer[9] vs. Bottom: LOGICSEG



Figure S7: Visual comparison results on ADE20K[7] val. Top: DeepLabV3+[10] vs. Bottom: LOGICSEG



Figure S8: Visual comparison results on Pascal-Part-108[4] test. Top: DeepLabV3+[10] vs. Bottom: LOGICSEG
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