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The supplementary material is organized as follows:
Section 1 presents additional experiments conducted with
our MFPI on other tasks, while Section 2, a theoretical anal-
ysis of spatial frequency representation enhancement (SFE)
and energy frequency representation enhancement (EFE) is
provided. Section 3 contains additional visualization re-
sults.

1. Extend MFPI to other tasks

Capturing long-range dependencies is a major challenge
in super-resolution (SR). However, convolutional neural
networks (CNNs) usually cannot capture long-range depen-
dencies due to their limited receptive fields. This problem is
more crucial in video super-resolution (VSR) than in single
image super-resolution (SISR) because VSR models need to
capture not only spatial but also temporal dependencies. We
intuitively speculate that our proposed modules are generic
and will be useful for other enhancement or restoration tasks
such as SISR, denoising, and so on.

Therefore, we applied our method directly to image de-
noising tasks, such as boosting InvDN [6] on the SIDD
[1] dataset by 0.06 dB, and SISR tasks, such as improving
TTSR [15] performance by 0.11 dB on the CUFED5 [17]
dataset. These results indicate that: (1) our proposed MFPI
is also effective on single image (SI) tasks; and (2) the per-
formance improvements on SI tasks are lower than on VSR,
indicating that our method is more suitable for VSR.

* The first two authors contribute equally. This work is done during
the internship of F. Li in Samsung. Z. Li is the corresponding author.

2. Theoretical analysis
2.1. The effectiveness of fast Fourier transform in

SFE

We first elaborate on the properties of the fast Fourier
transform (FFT) in the SFE and analysis the computational
complexity. The discrete Fourier transform (DFT) has been
widely adopted in digital image processing [11, 18], and
the FFT can facilitate and improve the speed of the DFT
[4]. For clarification, here we only discuss 1-D case with
the following formulation:

Xr =

c−1∑
k=0

xk exp(−2πjrk/C) :=

C−1∑
k=0

xkW
rk (1)

where Xr is the r-th coefficient of the FFT, r = 0, · · · , C−
1 denotes frequency of the FFT, and xk denotes the k-th
channel, j =

√
−1 and W = exp(−2πj/C) for simplicity.

Proposition 1. The computation of FFT can be reduced by
a factor of (log2 C)/C, where C is the number of channels.

Proof. Assume that xk is split into yk, zk, each of which has
half the channels. yk is composed of the even-numbered
channels, and zk is composed of the odd-numbered chan-
nels, which can be formulated as follows:{

yk = x2k

zk = x2k+1
k = 0, 1, · · · , C

2
− 1 (2)

The corresponding FFT can be formulated as follows:{
Yr =

∑C/2−1
k=0 yk exp(−4πjrk/C)

Zr =
∑C/2−1

k=0 zk exp(−4πjrk/C)
r = 0, 1, · · · , C

2
− 1

(3)



Notice the equations 1 and 3 and the properties of FFT
[11, 3], we have:

Xr =

C/2−1∑
k=0

{
yk exp(

−4πjrk

C
) + zk exp

(
−2πjr

C
(2k + 1)

)}
= Yr + exp (−2πjr/C) · Zr

(4)
where r = 0, 1, · · · , N − 1. When r values greater than
C/2, the transformations Yr and Zr periodically repeat the
case when r < C/2. Hence, by replacing r in equation 4 to
r + C/2, we have:

Xr+C/2 = Yr + exp

(
−2πj

[
r +

C

2

]
/C

)
· Zr

= Yr − exp(−2πjr/C) · Zr, 0 ≤ r < C/2
(5)

Considering the above cases and combining the equa-
tions 1, 4, 5, we can derive:

Xr = Yr +W rZr

Xr+ c
2
= Yr −W rZr

(6)

The equation 6 shows that it is possible to simplify the
calculation of FFT with C channels. By computing the
FFTs with two sequences of C/2 channels each, followed
by the computation of Yr (or Zr) with sequences of C/4
channels, the process can be continued, provided that each
function has a number of channels divisible by 2. Thus, the
conclusion can be proven.

2.2. The effectiveness of discrete cosine transform
in EFE

To enhance its representational capabilities, the EFE em-
ploys the discrete cosine transform (DCT) to convert fea-
tures into the frequency domain [2, 10]. Before delving into
its application, we offer a concise introduction to the DCT,
a commonly employed technique in signal processing and
data compression [13, 9].

We carry over the notations from the previous for sim-
plicity, where f ∈ RH×W is the input feature with two
dimensions, H , W is the height, width of x. Then the two-
dimensional DCT can be formulated as follows:

Fc(i, j) =
2√
HW

α(i)α(j)

H−1∑
h=0

W−1∑
w=0

fi,j (7)

Ki,j
h,w = cos

(
(2h+ 1)iπ

2H

)
cos

(
(2w + 1)jπ

2W

)
(8)

fh,w
c = Ki,j

h,w ×Fc (fi,j) (9)

where Fc denotes DCT operation, K denotes the basis func-
tion of DCT, α(x) = 1/

√
2 for x = 0 and α(x) = 1 other-

wise [13].

The mean-square reconstruction error (MSRE) between
transformed images fc and reference images f̂ , we could be
defined as:

Ēmse =
1

N

N∑
n=0

{
1

HW

H−1∑
h=0

W−1∑
w=0

[
f i,j
c,n − f̂ i,j

c,n

]2}

=
1

HW

H−1∑
h=0

W−1∑
w=0

E
{[

f i,j
c

]2} · [1− ϕ(i, j)]

(10)

where E
{[

f i,j
c

]2}
is the expectation of DCT components

at location (i, j), n denotes the number of input frames and
H,W denote the height, width of the input feature, ϕ(i, j)
is the masking function [13]. And for the variance of DCT
components, we denote f̄ as the mean of input feature set
{f1, f2, · · · , fn}, then we replace fn with fn − f̄ and f̂n
with f̂n − f̄ in the equation 10, the MSRE between the
feature set

{
f1 − f̄ , f2 − f̄ , · · · , fn − f̄

}
and their approx-

imations
{
f̂1 − f̄ , f̂2 − f̄ , · · · , f̂n − f̄

}
:

Emse =
1

N

n∑
n=0

{
1

HW

H−1∑
h=0

W−1∑
w=0

[
f i,j
n − f̄ i,j −

(
f̂ i,j
n − f̄ i,j

)]2}

=
1

HW

H−1∑
h=0

W−1∑
w=0

σ2
fi,j
c

· [1− ϕ(i, j)]

(11)
where σ2

fi,j
c

is the variance of DCT components. The equa-
tion 11 denotes the total MSRE which is equal to the av-
erage of the variances of the transform components when
ϕ(u,w) = 0. Therefore, the equation 11 holds when we re-
gard the pixels of the feature fn − f̄ generated by a random
process with zero mean and known variance. And the DCT
features are selected to minimize the MSRE in equation 11
to obtain optimal solution [12].

In the EFE, the energy function refines the input feature
set as {e1, ..., eN}, then we rearrange the mean and vari-
ance as follows:

Ēen mse =
1

N

N∑
n=0

{
1

HW

H−1∑
h=0

W−1∑
w=0

[
ei,jc,n − f̂ i,j

c,n

]2}

=
1

HW

H−1∑
h=0

W−1∑
w=0

E
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ei,jc
]2} · [1− ϕ(i, j)]

(12)



Een mse =
1

N

n∑
n=0

{
1

HW

H−1∑
h=0

W−1∑
w=0

[
ei,jn − f̄ i,j −

(
f̂ i,j
n − f̄ i,j

)]2}

=
1

HW

H−1∑
h=0

W−1∑
w=0

σ2
ei,jc

· [1− ϕ(i, j)]

(13)
Since the traditional DCT truncate the coefficients from

the representation, and thereby introduces errors [8]. In the
EFE, the energy DCT can be estimated from energy value
e, and the ei,j act as the scale factors for the unknown fea-
ture. Moreover, the equation 13 holds when ei,j can be ob-
tained from the input feature set and applied to the learnable
DCT filter. Therefore, our EFE, compared to standard DCT,
can be adaptive to process unknown inputs. In the ablation
experiments, EFE achived 0.6 dB higher than fixed coeffi-
cients with DCT initialization.

3. Visual comparisons on the test dataset.
Fig. 1 shows VSR results of MFPI and those of the state-

of-the-art methods on several challenging images from dif-
ferent datasets [7, 14, 5, 16].
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Figure 1: Visual results on REDS4 [7], Vimeo-90K-T [14], Vid4 [5], and UDM10 [16]. Zoom in to see better visualization.


