
Supplementary Material:Neural Reconstruction of Transparent Objects
with Self-Occlusion Aware Refraction-Tracing

1. More results

1.1. Reconstruction using surface rendering or vol-
ume rendering.

Qualitative and quantitative results using full views with
different rendering techniques are presented in Figure 1 and
Table 1. As you can see, volume rendering yields better
results with rich details.

(a) Surface rendering (b) Volume rendering

Figure 1: Reconstruction with surface rendering or volume
rendering.

1.2. DRT dataset.

Reconstruction with full views(72 views). The recon-
structions are presented in Figure 5, and the quantitative
comparisons are shown in Table 2.

Dog Rabbit Tiger
Acc ↓ Comp ↓ Acc ↓ Comp ↓ Acc ↓ Comp ↓

Surface 10.8523 1.1775 1.2415 1.0435 15.162 1.0975
Volume 0.7601 0.6274 0.5839 0.4941 0.7099 0.5705

Table 1: Reconstruction with volume rendering or surface
rendering.

(a) Error map (b) Important pixels

Figure 2: Refraction errors and important pixels (the pixels
with top 20% large errors in an image). To speed up the
network optimization, we perform refraction tracing on the
explicit mesh to obtain the errors of all pixels for each view
and sample more camera rays from the pixels with top 20%
large errors in an image.

1.3. Self-collected objects.

Besides the Bull, we collected two more real transparent
objects, Mouse and Tiger. The qualitative comparisons are
provided in Figure 3.

2. Data Acquisition of self-collected objects

Similar to the previous work [5, 3], a monitor is used
as background, which displays gray-coded patterns. The
transparent object is rotated using a turntable to capture the
object from a set of (8 by default) viewpoints which are
uniformly sampled from 360◦ space. For each viewpoint,
a series of horizontal and vertical stripe patterns are dis-
played for silhouette extraction and environment matte [6].
The environment matte allows our method to calculate the
location where a refracted camera ray hits on the moni-
tor background. The obtained ray-location correspondences
are used for geometry optimization.
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DRT[3] Our
Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑ Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑

Pig 0.6566 0.6863 0.7318 0.6974 0.7142 0.5669 0.4689 0.8286 0.8671 0.8474
Dog 0.9072 0.8704 0.5588 0.5466 0.5526 0.7601 0.6274 0.6712 0.7376 0.7029

Mouse 0.8018 0.839 0.5535 0.4951 0.5226 0.7788 0.6811 0.5792 0.6219 0.5998
Monkey 0.945 0.8923 0.4354 0.4491 0.4422 0.8415 0.7467 0.4273 0.5547 0.4827
Horse 0.6636 0.6095 0.79084 0.9007 0.8422 0.6193 0.4099 0.8262 0.9504 0.884
Tiger 0.8191 0.723 0.7435 0.791 0.7665 0.7099 0.5705 0.756 0.8447 0.7979

Rabbit 0.5971 0.6202 0.7865 0.7516 0.7686 0.5839 0.4941 0.8141 0.8516 0.8324
Hand 0.4789 0.5855 0.6969 0.496 0.5796 0.3947 0.314 0.7481 0.8017 0.7740

Table 2: The evaluation of reconstructions with full views using full metrics. Compared with DRT [3] and Li et al. [1], our
method achieves the best performance in all cases

Method Definition
Accuracy er→G = ming∈G |r− g|
Completeness eg→R = minr∈R |g − r|
Precision P (ξ) = 100

|R|
∑

r∈R [er→G < ξ]

Recall R(ξ) = 100
|G|

∑
g∈G [eg→R < ξ]

F-score F (ξ) = 2P (ξ)R(ξ)
P (ξ)+R(ξ)

Table 3: Metric definitions. Let G be the ground truth and
R a reconstructed point set being evaluated.

3. Adaptive sample strategy

We leverage an adaptive ray sampling strategy to speed
up the optimization. Specifically, in the optimization, we
sample more rays in the regions of an object with large re-
fraction errors, typically the regions with rich details. How-
ever, this strategy requires calculating the refraction errors
of all the pixels for each image, which will be significantly
time-consuming if we adopt volume rendering [4] to calcu-
late the errors. Fortunately, the errors are only used to guide
the ray sampling instead of optimizing the geometry, so the
errors are not required to be differentiable.

As a result, we utilize a more efficient way to calculate
the errors. We use the marching cube technique [2] to obtain
the explicit mesh of the optimized geometry and conduct
refraction-tracing on the mesh to obtain the errors at a fast
speed. An error map of a view is shown in Figure 2. We
also visualize the pixels with top 20% large errors, we will
sample more points from the important pixels. It takes about
0.27 seconds to get an error map per view.

4. Evaluation metrics

The definitions of 3D reconstruction metrics are shown
in Table 3, and the ξ is a pre-defined threshold, ξ = l/256,
where l is the length of the longest side of the object bound-
ing box.
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Ours DRT [3]
Figure 3: The reconstructions of real data.
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Figure 4: The reconstructions of dense views(72 views) on DRT’s dataset.
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Figure 5: The reconstructions of dense views(72 views) on DRT’s dataset.


