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1. Pseudo Codes of the Proposed Method

To better present our approach and demonstrate the
workflow, we give the pseudo codes of FEDETF. The
pseudo code of the federated learning (FL) training is shown
in Algorithm 1, and the pseudo code of the personalized lo-
cal finetuning is shown in Algorithm 2.

Algorithm 1: FEDETF FL Training
Input: Clients {1, . . . ,K}, communication round

T , local epoch E, initial model
w1 = {u,p, β}, feature dimension d,
balanced loss hyperparameter γ.

Output: Gloabl model wg .
Synthesize a simplex ETF VETF ∈ Rd×C by Eq.

(3) as the fixed classifier for all clients;
for t = 1, . . . , T do

for client k = 1, . . . ,K in parallel do
wt

k ← wt;
for local epoch e = 1, . . . , E do

Obtain Lg
k by Eq. (6, 7, 8);

wt
k ← wt

k − η∇Lg
k(w

t
k);

end
end
The server updates wt+1 by Eq. (2).

end
The final global model wg = wT .

2. Implementation Details

Models and Data. Our model implementations of the
ResNet series and the DenseNet are referred from the codes
of [5]. The model implementation of the EfficientNet is re-
ferred from the official code in [9], and the implementation
of the MobileNetv2 is referred from [8, 4]. For the data,
we use the Dirichlet-sampling-based data partition adopted
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Algorithm 2: FEDETF Personalized Finetuning
Input: Clients {1, . . . ,K}, iteration round Tp,

epoch for each stage E, final global model
wg = {u,p, β,VETF }.

Output: Personalized local models {wp
k}Kk=1.

Assign the final global model wg as clients’ initial
local models.

Finetune the feature extractor.
for client k = 1, . . . ,K in parallel do

ŵk = {u, β}, wk = {p,VETF };
for local epoch e = 1, . . . , E do

Obtain Lp
k by Eq. (9, 10, 11);

ŵk ← ŵk − η∇Lp
k(ŵk);

end
end
for t = 1, . . . , Tp do

for client k = 1, . . . ,K in parallel do
Finetune the ETF classifier.
ŵk = {VETF , β}, wk = {p,u};
for local epoch e = 1, . . . , E do

Obtain Lp
k by Eq. (9, 10, 11);

ŵk ← ŵk − η∇Lp
k(ŵk);

end
Finetune the projection layer.
ŵk = {p, β}, wk = {VETF ,u};
for local epoch e = 1, . . . , E do

Obtain Lp
k by Eq. (9, 10, 11);

ŵk ← ŵk − η∇Lp
k(ŵk);

end
end

end
The personalized local models are
{wp

k = ŵk ∪wk}Kk=1.

in [6, 1, 2, 7]. It considers a class-imbalanced data het-
erogeneity, controlled by hyperparameter α, and smaller α
refers to more Non-IID data of clients. When α < 1, the
data are considered to be rather Non-IID, which means that
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Figure 1. Visualization of clients’ data distributions. Random seed is 8. Left: data distributions of Non-IID α = 0.1 with 20 clients.
Right: data distributions of Non-IID α = 0.05 with 20 clients.

most of the training samples of one class are likely assigned
to a small portion of clients [1]. In our Dirichlet implemen-
tation, when α goes smaller, the number of samples in each
client along with the class distribution of each client both
become more heterogeneous, which is realistic in practical
scenarios. We use the same Tiny-ImageNet dataset as in [2].
Local learning rate and optimizer. For CIFAR-10 the lo-
cal learning rate (LR) η = 0.04, and for CIFAR-10 and
Tiny-ImageNet, η = 0.01. For clients, we use SGD op-
timizer with momentum 0.9 and weight decay 5 × 10−4.
Following [3], we adopt a learning rate decaying scheduler,
which decays the local LR by 0.99 in each round.
Hyperparameters. For FEDETF, we set the feature di-
mension to the number of classes, i.e. d = C; the initial
temperature β = 1; γ = 1. We set µFedProx = 0.001 in
FEDPROX and αFedDyn = 0.01 in FEDDYN as suggested
in their official implementations or papers. For DITTO, the
learning setting of the personalized model is the same as the
one of the global model. For FEDREP, the epoch number
of the classifier training and the epoch number of the fea-
ture extractor training are the same and are set as E. For
FEDROD, we set γ = 1. For CCVR, the number of virtual
features is 10 per class, and the number of classifier cali-
bration training epochs is 100. For FEDNH, the smoothing
hyperparameter ρ = 0.9 as suggested in the paper [2].
Randomness. We set the same random seeds for all
methods in the same setting. The random seed list is
{7, 8, 9, 10}. For the extremely Non-IID settings when
α = 0.05, we use the random seeds that can ensure all
clients can be assigned a proportion of training data (on the
contrary, some random seeds will generate a data partition
where particular clients have zero data samples).
Environments. All experiments are conducted in PyTorch
with Quadro RTX 8000 GPUs.

3. Visualization
3.1. Visualization of clients’ data distributions.

Here, we additionally visualize the clients’ data distribu-
tions mainly adopted in the main paper. In the main paper,
we adopt α ∈ {0.1, 0.05} with 20 clients in Tables 1, 3,
and 4. We visualize the data distributions in Figure 1. It

shows that in both settings, the clients have extremely het-
erogeneous data distributions. Especially when α = 0.05,
all clients have some classes missing, and some clients have
extremely rare data (e.g. client 1). We note that these set-
tings are very realistic in practical FL scenarios.
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