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In this supplementary material, we provide extensive ex-
perimental justifications and discussions to clarify the pro-
posed method, which consists of three sections.

Sec. A: Quantitative Comparison.

• The comparison with OSOD and DAOD settings;

• Further analysis in graph and motif designs;

• Sensitivity analysis of hyperparameters;

• Model efficiency comparison.

Sec. B: Clarification and Discussion.

• The difference with other related tasks;

• Clarifying more technical details;

• Detailed AOOD benchmark setup.

Sec. C: Qualitative Comparison.

A. Quantitative Comparison
A.1. Benchmark Comparison

Comparison under Open Set Object Detection (OSOD)
settings. To further evaluate the novel-class detection ca-
pacity, we compare the performance under the OSOD set-
ting (without the domain gap), as shown in Table 1. We
observe that PROSER [25] and OW-DETR [9] will sacri-
fice obvious mAPb, while OpenDet [10] and the proposed
SOMA can both boost the base-class accuracy. Moreover,
SOMA achieves the best 51.84%, 48.87%, 61.77%, 41.32%
mAPb and 4.51%, 10.3%, 11.64%, 9.96% ARn on all tasks,
surpassing state-of-the-art OW-DETR [9] comprehensively.
Our method works well in different scenarios.
Comparison under Domain Adaptive Object Detection
(DAOD) settings. To evaluate and justify the effectiveness
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Method Set mAPb↑ ARn↑ WI↓ AOSE↓
DDETR [26]ICLR′21

he
t-

se
m

50.03 0.00 1.344 714
PROSER [25]CV PR′21 50.32 2.44 0.997 296
OpenDet [10]CV PR′22 50.85 3.47 1.031 297
OW-DETR [9]CV PR′22 48.32 2.48 1.147 286
SOMA (ours) 51.84 4.51 0.946 205
DDETR [26]ICLR′21

ho
m

-s
em

46.77 0.00 4.012 1693
PROSER [25]CV PR′21 45.51 7.41 3.978 1030
OpenDet [10]CV PR′22 47.02 8.36 3.923 996
OW-DETR [9]CV PR′22 46.86 7.34 4.095 1000
SOMA (ours) 48.87 10.37 3.883 904
DDETR [26]ICLR′21

fr
eq

-d
ec

59.46 0.00 1.631 675
PROSER [25]CV PR′21 59.62 10.07 1.496 448
OpenDet [10]CV PR′22 60.56 9.79 1.306 392
OW-DETR [9]CV PR′22 58.75 7.69 1.231 342
SOMA (ours) 61.77 11.64 1.313 371
DDETR [26]ICLR′21

fr
eq

-in
c

39.47 0.00 5.299 3049
PROSER [25]CV PR′21 39.44 3.46 5.015 1962
OpenDet [10]CV PR′22 40.74 3.20 4.428 1523
OW-DETR [9]CV PR′22 38.92 3.26 4.532 938
SOMA (ours) 41.32 9.96 4.231 647

Table 1. Comparison results on Cityscapes with OSOD evaluation
on five novel classes. This setting does not consider novel scenes.

Method SFA [20] AQT [12] O2net [7] MTTrans [23] SOMA
Reference MM21 IJCAI22 MM22 ECCV22 Ours

C→F 41.3 47.1 46.8 45.4 47.9 (+0.8)
C→B 28.9 29.4 30.5 32.6 33.0 (+0.4)

Table 2. Comparison results on Cityscapes→Foggy Cityscapes
(C→F) and Cityscapes→BDD100k (C→B) with DAOD settings.
This setting does not consider novel classes.

of the cross-domain adaptation, we further conduct DAOD
experiments on Cityscapes→Foggy Cityscapes (C→F) and
Cityscapes→BDD100k [22] (C→B) following the stan-
dard DAOD setting [20] and implement SOMA on the lat-
est DAOD baselines to make a comparison with existing
DETR-based DAOD methods. SOMA outperforms the ex-
isting best entry (AQT [13]) with 0.8% on C→F setting, and
also surpasses SOTA method (MTTrans [23]) on C→B with
0.4% mAP respectively. This indicates that introducing ad-
equate high-order evidence can greatly enhance the domain
alignment with more accurate pseudo-labels, verifying the
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practical design of the proposed method.

A.2. Further Analysis

Justifying densely connected base-class centers. We ex-
plore establishing graphs with densely connected base-class
centers (dense), as shown in Table 3. Our default design
(farthest) outperforms the dense counterpart on both het-
sem (left) and hom-sem (right) settings significantly, veri-
fying our reasonable design. The reason may be that the
farthest connection can avoid the semantic-level bias for
two similar classes, improving the class-irrelevant property
learning for reliable novel-class learning. Moreover, the T-
SNE visualization in the main paper also supports the effec-
tiveness of the farthest design in the graph establishment.
Extension to higher-order motifs. We further explore
4th and 5th order motifs, as shown in the Table 4. Com-
pared with 3rd order, higher-order reduces open-set errors
(AOSE) but sacrifices ARn due to the more strict motif se-
lection constraint in the topological evidence aspect. Hence,
increasing the order of motifs can select higher-quality mo-
tifs with better semantic discriminability (better AOSE and
mAPb), but may reduce the number of selected motifs with
a worse ARn. Our design (3rd-order) achieves a satisfac-
tory trade-off between the base and novel classes.

A.3. Sensitivity Analysis

The weight of loss functions. The detailed experimental
analysis on the λ1 for LSTL and λ2 for LSNL is shown in
Table 5. We control one of the hyper-parameters and change
the other to analyze its sensitivity respectively. As for λ1

with {0.05, 0.1, 0.2} three settings, we find that base-class
results are robust while setting a larger weight can further
improve novel-class performance, e.g., λ1 = 0.02 gives
a better 4.15% ARn. Our default setting (λ1 = 0.1) can
achieve a satisfactory trade-off between the base and novel
classes on all four evaluation metrics. As for λ2, we find
that setting a larger and smaller value both affects the per-
formance negatively, which verifies our optimal setting.
The learning of the semantic bank. As shown in Table 6,
we analyse the semantic bank Q in terms of α (controlling
the learning speed) and β (scaling the standard diversion).
As for the α with {0.001, 0.01, 0.1}, the setting with a too
large (α = 0.1) or small (α = 0.001) value has some nega-
tive influence with 44.29% and 43.21% mAPb respectively,
compared with our optimal setting (α = 0.01) with 45.5%
mAPb. Considering the three settings {1.0, 2.0, 3.0}, set-
ting the scaling factor β with 1.0 and 2.0 give similar results
with robust performance. Using a too large value β = 3.0
reduces the performance on mAPb and ARn, which may
be caused by the inaccurate distribution estimation. Hence,
the sensitivity analysis verifies the robustness of our method
and the appropriate hyperparameter tuning.

het-sem hom-sem
Graph mAPb↑ ARn↑ WI↓ AOSE↓ mAPb↑ ARn↑ WI↓ AOSE↓
dense 43.76 3.55 0.777 1218 43.07 8.07 2.883 3021
farthest 45.55 4.08 0.526 649 43.37 8.42 2.281 2886

Table 3. Comparison of the densely connected graph (dense) and
the proposed farthest connected design (farthest) on Cityscapes→
Foggy Cityscapes with 5 novel classes.

3rd order (default) 4th order 5th order
mAPb↑ ARn↑AOSE↓ mAPb↑ ARn↑AOSE↓ mAPb↑ ARn↑AOSE↓
45.55 4.08 649 46.20 3.82 452 45.92 3.77 429

Table 4. Comparison results on Cityscapes→ Foggy Cityscapes
(het-sem. 5 novel-class) with the motifs in different orders.

λ1 λ2 mAPb ↑ ARn ↑ WI↓ AOSE↓
.05 .01 45.37 2.98 0.532 717
.1 .01 45.55 4.08 0.526 649
.2 .01 44.96 4.15 0.589 710
.1 .005 44.53 3.67 0.566 683
.1 .01 45.55 4.08 0.526 649
.1 .02 44.68 3.52 0.741 832

Table 5. Comparison results on Cityscapes→Foggy Cityscapes
about different loss function weight settings on λ1 and λ2.

α β
0.001 0.01 0.1 1.0 2.0 3.0

mAPb ↑ 44.29 45.55 43.21 45.55 45.39 44.02
ARn ↑ 4.02 4.08 3.81 4.08 4.09 3.21

Table 6. Comparison results on Cityscapes→Foggy Cityscapes
about the hyper-parameter α and β in semantic bank learning.

Training time (s/iter)↓ Inference time (s/iter)↓
Baseline OW-DETR SOMA Baseline OW-DETR SOMA
0.5191 0.8169 0.6725 0.3950 0.4029 0.3950

Table 7. Comparison of training time and inference speed.

A.4. Model Efficiency

We compare the training and inference time (s/iter) with
DDETR [26] (Baseline), OW-DETR [9] (SOTA counter-
part), and the proposed SOMA. Compared with the baseline
model, SOMA achieves comparable training time and does
not sacrifice inference speed. Moreover, SOMA works bet-
ter than OW-DETR in both aspects with satisfactory model
efficiency. Note that the proposed SOMA is a parameter-
free method, which doesn’t introduce any extra computation
cost in the inference stage. Hence, the considerable perfor-
mance improvement of the proposed SOMA framework does
not rely on additional model parameters.



B. Clarification and Discussion

B.1. The Difference with Existing Task Settings

The relationship between AOOD and Universal Do-
main Adaptive Object Detection (UniDAOD). Though
UniDAOD [18] also considers the novel classes in the cross-
domain scenes, there are significant differences between the
proposed AOOD and UniDAOD, which can be summarized
into the three aspects: 1) Task setting. AOOD aims to con-
duct high-quality detection in both base and novel classes
while UniDAOD only detects base-class objects and does
not detect novel objects. The critical advantage of AOOD
is its capacity to detect abnormal objects. 2) Methodology
Design. AOOD needs to mitigate the mutual influence be-
tween base and novel objects to ensure good performance
in both aspects. UniDAOD focuses on better base-class
learning by eliminating the influence of novel objects. 3)
Evaluation Metrics. AOOD follows the strict evaluation in
both base-class detection (mAPb) and novel-class detection
(ARn, WI, and AOSE), while UniDAOD only needs to eval-
uate the base-class performance with mAPb.
The difference between AOOD and Open-Set Object De-
tection (OSOD). OSOD [3, 10], a.k.a, OOD in object de-
tection [5, 4] aim to detect base and novel-class objects in
a labeled domain, while AOOD needs to perform the same
detection in an unlabeled domain with significant domain
shift. In OSOD, the objects out of the base-class distribu-
tion can be uniformly considered as novel-class objects for
the model training. Differently, AOOD is a more challeng-
ing setting since both novel-class and cross-domain objects
are embedded out of the labeled base-class distribution, pre-
venting reliable model learning.
The difference between AOOD and Open Vocabulary
Detection (OVD). OVD [8, 24, 6] requires additional la-
bels (image captions) with linguistic cues for both base and
novel classes, and classifies each novel class within this la-
beled domain. In contrast, AOOD does not rely on any la-
beled novel-class cues, and must detect novel-class objects
as unknowns in an unlabeled novel domain.
The difference between AOOD and related classification
settings. Assuming the base-class set Ωb, novel-class set
Ωn and background-class set Ωbg , we define the class space
of a source and target domain with Cs and Ct, respectively,
to clarify the difference. Adaptive open-set classification
has not been well benchmarked in literature, while some
highly related settings are summarized below.

• Open-set domain adaptation (OSDA) [16, 17, 15], as-
sumes Cs = Ωb and Ct = Ωb ∪ Ωn.

• Universal domain adaptation (UniDA) [21] follows the
assumption with Cs = Ωb ∪ Ωs

n and Ct = Ωb ∪ Ωt
n

with the inconsistent novel-class splitting Ωs
n ̸= Ωt

n.

Set Base-class Novel-class {3, 4, 5}

het-sem car truck bus
person motor train
person motor train bicycle
person motor train bicycle rider

hom-sem person bicycle bus
car truck train
car truck train motor
car truck train motor rider

freq-dec person car rider
bicycle train truck
bicycle train truck motor
bicycle train truck motor bus

freq-inc motor truck bus
person train car
person train car bicycle
person train car bicycle rider

Table 8. Detailed class splitting settings for Cityscapes→ Foggy
Cityscapes and Cityscapes→ BDD100k benchmarks.

• Partial domain adaptation (PDA) [1] is defined as
Cs = Ωb, Ct ⊆ Ωb.

The differences between the proposed AOOD and the afore-
mentioned tasks lie in three aspects. 1) Different from all
classification tasks, AOOD considers a more challenging
and real-world friendly setting: Cs = Ωb ∪ Ωs

n ∪ Ωs
bg and

Ct = Ωb ∪ Ωt
n ∪ Ωt

bg , with the involved unlabeled back-
ground class. 2) Different from UniDA, there are no labeled
novel classes in the source domain for AOOD. Moreover,
AOOD is a more practical setting without the Ωs

n ̸= Ωt
n

constraint since it formulates the existence of the same/d-
ifferent novel objects in two domains. 3) Unlike OSDA
and PDA, AOOD allows novel classes to appear everywhere
(both domains) to simulate the real-world scenario.

B.2. Technical Details

The basic object detector (DDETR). Given batched im-
age input I , DDETR [26] first adopts a feature extrac-
tor to obtain multi-level image features X . With the
image-level feature X ∈ RD×H×W extracted from the
backbone, DDETR [26, 2] formulates each feature point
{xi}W×H

i=1 , xi ∈ RD as a feature token and send them to
the deformable transformer encoder (with position encod-
ing) to conduct the self-attention operation. Then, in the de-
formable transformer decoder, N = 100 predefined object
queries Qraw ∈ RN×D are introduced to conduct cross-
attention with feature tokens. After that, we obtain N de-
coded object queries Q with the information of X .
How to obtain matched object queries. Given the de-
coded object queries Q, we follow DETR [2, 26] by sending
object queries into feedforward networks to obtain the class
and bounding box predictions. Then, the bipartite match-
ing [2] is performed to match each ground-truth object with
the optimal decoded object query. After that, the matched
object query is denoted as Qm, while the rest unmatched
counterparts are denoted as Qum in the main paper.



B.3. Experimental Setup

Cityscapes→Foggy Cityscapes/BDD100k. We present the
detailed base and novel class splittings according to four
protocols in Table 8, which considers the semantic overlap-
ping and instance frequency for the following reasons.

1) The novel-class semantic is diverse in the real world,
which may (not) be overlapped with base classes. Recently-
published open-set research [19] has pointed out that both
aspects (with and without semantic overlapping) are mean-
ingful in the real world. However, most existing OSOD
works [10, 11, 9, 14] only consider a single aspect, i.e., the
novel-class objects having minor semantic overlapping with
base classes. Hence, we consider both aspects with hetero-
geneous and homogeneous semantics for strict evaluation in
the proposed AOOD benchmark.

2) The novel-class scale is diverse in the real world,
which may (not) be the majority of a scene. However, all ex-
isting OSOD research has ignored this vital open-set prop-
erty in the real world. Hence, to break through this barrier,
we count the number of objects in each class and select the
most and the least three classes as base classes to simulate
this real-world diversity.

After splitting the base and novel classes, we follow ex-
isting OSOD works [10] by considering different numbers
of novel classes for strict evaluation, establishing {3, 4, 5}
three sub-tasks. We remove the image containing the novel-
class objects that haven’t been defined in the current sub-
task1 to avoid wrong and inaccurate evaluations.
Pascal VOC→Clipart. We follow the base-/novel-class
splitting [14] by considering the first 10 classes in alpha-
betical order as the base class. The rest classes are divided
into |Ωn| ∈ {6, 8, 10} classes to serve as the considered
novel-class set Ωn, yielding three different sub-tasks. Note
that we remove the images containing the novel-class /∈ Ωn

for a fair evaluation in each sub-task, which can prevent the
correctly-detected novel-class objects from being wrongly
evaluated as a false-positive prediction.

C. Qualitative Comparison

We present more qualitative comparisons among (a)
DDETR [26], (b) OW-DETR [9], (c) the proposed SOMA
in Figure 1-2. We highlight the detected open-set objects
by the proposed method. Our method can achieve bet-
ter open-set detection compared with the low-order method
OW-DETR [9], which verifies the effectiveness of our
motif-based high-order solution. Moreover, compared with
DDETR [9] and OW-DETR [26], our method gives more
high-quality detection for base classes, demonstrating the
strength in cross-domain adaptation. Our method performs

1The objects have corresponding labels defined in the dataset but are
not considered as novel classes /∈ Ωn in the current sub-task.

better on both base and novel objects, fitting for the real-
world scenario with great potential.

References
[1] Zhangjie Cao, Lijia Ma, Mingsheng Long, and Jianmin

Wang. Partial adversarial domain adaptation. In ECCV,
pages 135–150, 2018. 3

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In ECCV, pages
213–229. Springer, 2020. 3

[3] Akshay Dhamija, Manuel Gunther, Jonathan Ventura, and
Terrance Boult. The overlooked elephant of object detection:
Open set. In WACV, pages 1021–1030, 2020. 3

[4] Xuefeng Du, Gabriel Gozum, Yifei Ming, and Yixuan
Li. Siren: Shaping representations for detecting out-of-
distribution objects. In Neurips, 2022. 3

[5] Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos:
Learning what you don’t know by virtual outlier synthesis.
arXiv preprint arXiv:2202.01197, 2022. 3

[6] Mingfei Gao, Chen Xing, Juan Carlos Niebles, Junnan Li,
Ran Xu, Wenhao Liu, and Caiming Xiong. Towards open
vocabulary object detection without human-provided bound-
ing boxes. arXiv preprint arXiv:2111.09452, 2021. 3

[7] Kaixiong Gong, Shuang Li, Shugang Li, Rui Zhang,
Chi Harold Liu, and Qiang Chen. Improving transferabil-
ity for domain adaptive detection transformers. In ACMMM,
pages 1543–1551, 2022. 1

[8] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui.
Open-vocabulary object detection via vision and language
knowledge distillation. ICLR, 2022. 3

[9] Akshita Gupta, Sanath Narayan, KJ Joseph, Salman Khan,
Fahad Shahbaz Khan, and Mubarak Shah. Ow-detr: Open-
world detection transformer. In CVPR, 2022. 1, 2, 4, 6, 7

[10] Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan,
and Gui-Song Xia. Expanding low-density latent regions for
open-set object detection. In CVPR, 2022. 1, 3, 4

[11] Yusuke Hosoya, Masanori Suganuma, and Takayuki
Okatani. More practical scenario of open-set object detec-
tion: Open at category level and closed at super-category
level. arXiv preprint arXiv:2207.09775, 2022. 4

[12] Wei-Jie Huang, Yu-Lin Lu, Shih-Yao Lin, Yusheng Xie, and
Yen-Yu Lin. Aqt: Adversarial query transformers for domain
adaptive object detection. In IJCAI, 2022. 1

[13] Wei-Jie Huang, Yu-Lin Lu, Shih-Yao Lin, Yusheng Xie, and
Yen-Yu Lin. Aqt: Adversarial query transformers for domain
adaptive object detection. In 31st International Joint Confer-
ence on Artificial Intelligence, IJCAI 2022, pages 972–979.
IJCAI, 2022. 1

[14] KJ Joseph, Salman Khan, Fahad Shahbaz Khan, and Vi-
neeth N Balasubramanian. Towards open world object de-
tection. In CVPR, pages 5830–5840, 2021. 4

[15] Wuyang Li, Jie Liu, Bo Han, and Yixuan Yuan. Adjustment
and alignment for unbiased open set domain adaptation. In
CVPR, pages 24110–24119, June 2023. 3

[16] Pau Panareda Busto and Juergen Gall. Open set domain
adaptation. In ICCV, pages 754–763, 2017. 3



[17] Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and
Tatsuya Harada. Open set domain adaptation by backpropa-
gation. In ECCV, pages 153–168, 2018. 3

[18] Wenxu Shi, Lei Zhang, Weijie Chen, and Shiliang Pu. Uni-
versal domain adaptive object detector. In ACM MM, pages
2258–2266, 2022. 3

[19] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisser-
man. Open-set recognition: A good closed-set classifier is
all you need. arXiv preprint arXiv:2110.06207, 2021. 4

[20] Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-
Jun Zha, Yonggang Wen, and Dacheng Tao. Exploring
sequence feature alignment for domain adaptive detection
transformers. In ACM MM, pages 1730–1738, 2021. 1

[21] Kaichao You, Mingsheng Long, Zhangjie Cao, Jianmin
Wang, and Michael I Jordan. Universal domain adaptation.
In CVPR, pages 2720–2729, 2019. 3

[22] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In CVPR, June 2020. 1

[23] Jinze Yu, Jiaming Liu, Xiaobao Wei, Haoyi Zhou, Yohei
Nakata, Denis Gudovskiy, Tomoyuki Okuno, Jianxin Li,
Kurt Keutzer, and Shanghang Zhang. Cross-domain object
detection with mean-teacher transformer. In ECCV, 2022. 1

[24] Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-
Fu Chang. Open-vocabulary object detection using captions.
In CVPR, 2021. 3

[25] Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Learning
placeholders for open-set recognition. In CVPR, 2021. 1

[26] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. ICLR, 2020. 1, 2, 3, 4, 6, 7



Figure 1. Qualitative results on the Cityscapes→Foggy Cityscapes AOOD benchmark of (a) DDETR baseline [26], (b) OW-DETR [9], (c)
the proposed SOMA. (Zooming in for best view.)



Figure 2. Qualitative results on the Cityscapes→Foggy Cityscapes AOOD benchmark of (a) DDETR baseline [26], (b) OW-DETR [9], (c)
the proposed SOMA. (Zooming in for best view.)


