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In this supplementary material, we first declare the limi-
tations and failure cases for the proposed method. Then We
perform more extensive experiments, including compatibil-
ity with the transformer-based model, ViT[1], robustness to
different data streaming orders, and the evaluation results
on 3D point cloud data. In addition, we further conduct
some visualization experiments to provide a more intuitive
demonstration of how our approach works.

1. Limitation and Failure Case
We explicitly discuss the limitation of the proposed

method and analyze the failure case when the assumptions
are violated. Our method is built to resolve a common sce-
nario during open-world test-time training, i.e. target do-
main consists of strong OOD samples. Nevertheless, we
do not rule out the scenario where the target domain is not
contaminated with strong OOD samples. As our method re-
lies on detecting strong OOD samples to improve robust-
ness, it may mistakenly treat some weak OOD samples
as strong OOD ones. As such, test-time training perfor-
mance may be compromised when the target domain is not
contaminated with strong OOD samples, and this is not a
known priori. To verify this limitation, we first evaluate
our method, as well as other competing methods, on the
“clean” CIFAR10-C test set, i.e. the target domain only
contains the CIFAR10-C test set. To enable OOD detec-
tion under a potentially single-modal OOD score distribu-
tion, we restrict the strong OOD detection threshold to be-
tween 0.4 and 1.0. We compare the results with the target
domain contaminated with random noise as strong OOD
samples. As shown in Tab. 1, we make the following ob-
servations from the results. First, when it is known a priori
that the target domain only contains weak OOD samples,
our method without using an OOD detector performs com-
parably to the state-of-the-art TTT methods, e.g. TTAC.
However, all competing methods with strong OOD detec-
tors would suffer when this prior knowledge is not available,
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Table 1: The performance under CIFAR10-C
with (w/ Str. OOD) and without (w/o Str. OOD) strong
OOD samples.

Method OOD Det. w/o Str. OOD AccS w/ Str. OOD AccH

TEST × 70.59 N/A
BN × 79.73 N/A

TENT × 80.91 N/A
SHOT × 82.58 N/A
TTT++ × 80.74 N/A
TTAC × 86.36 N/A
Ours × 85.25 N/A

TEST ✓ 54.19 81.36
BN ✓ 74.22 85.11

TENT ✓ 76.70 32.77
SHOT ✓ 74.64 67.23
TTT++ ✓ 76.86 47.86
TTAC ✓ 78.45 70.35
Ours ✓ 78.63 91.56

e.g. Ours drops from 85.25% to 78.63% on clean accu-
racy. Nevertheless, our proposed method still outperforms
all competing methods with a large margin on the harmonic
mean AccH and there is a good balance between clean ac-
curacy and accuracy under strong OOD samples when OOD
detection is included. In contrast, without strong OOD de-
tection, all methods fail to identify strong OOD samples.
As direct calculating AccH under this circumstance yields
AccH = 0, we use N/A to indicate this situation. Overall, it
still remains an open question of how to trade off a balance
between being robust to strong OOD samples and maintain-
ing good performance when the target domain only contains
clean OOD samples.

2. Compatibility with Transformer Backbone

In this section, we perform additional experiments with
ViT backbone [1]. The ViT model pre-trained in the clean
CIFAR-10 dataset is utilized as the source domain model.
Then we test it on the Cifar10-C test set under the strongest
corruption level. All experiments were conducted under our
OWTTT protocol, where random noise, MNIST, SVHN,



CIFAR100-C, and Tiny-ImageNet are respectively selected
as strong OOD data. The results presented in Tab. 2 demon-
strated that our method is compatible with a more advanced
backbone network.

3. Data Streaming Order
In this section, we explore the impact of the testing data

streaming order on our approach. We randomly shuffled the
test data four times and performed test-time Training sepa-
rately. The experimental results are shown in Tab. 3. Since
we use a moving average queue Nm to select the optimal
threshold τ∗, which is less affected by the data streaming
order, our method demonstrates strong stability regardless
of the order of data streaming.

4. Imapct of Thresholding Ratio
To further reduce the effect of incorrect pseudo labeling,

we only use 50% of samples with odi far from τ∗ to perform
prototype clustering for each batch. We explored the pro-
portions of testing samples for clustering by setting the pro-
portions to 25% 50% 75% and 100%, and using CIFAR10-
C as the weak OOD. The results are presented in Tab. 4. It
is evident that our method is not sensitive to the proportion
of used pseudo labels.

5. Additional Details
Source Domain Prototypes: We obtain the source domain
prototypes by first running inference on all source domain
training samples. More specifically, the prototypes are ob-
tained via the following equation.

pk =
1∑

yi∈Ds

1(yi = k)

∑
xi,yi∈Ds

1(yi = k) · f(xi) (1)

6. Evaluation on 3D Point Cloud Data
To demonstrate the applicability of our proposed method

across diverse tasks, we extended the OWTTT protocol to
the 3D point cloud classification task.
Method: We maintain consistency with the methods in the
manuscript, making only minor adaptations specifically for
3D point cloud data. Due to the inherently discrete nature
of point cloud data compared to image data, we employ
strong OOD prototypes Pu and weak OOD prototypes Ps

together to enhance the discriminative power of the Strong
OOD Score OS′

i, defined as Eq. 2. To enable the adaptation
of Pu with respect to changes in the test data, we employ
a momentum-based updating approach. Specifically, for a
given sample xs that is predicted as a strong OOD instance,
we update the most similar strong OOD prototype pi in Pu,
as shown in Eq. 3.

OS′
i = (1− ss) ·

ss
ss + su

+ su · su
ss + su

ss = max
pk∈Ps

< f(xi), pk >

su =
1

10

10∑
j=1

dij

s.t. {dij}|Pu|−1
j=0 = sort({< f(xi), pk >}pk∈Pu

)

and di0 = max
pk∈Pu

< f(xi), pk >

(2)

pi = (1− δ)pi + δf(xs) (3)

Datasets: We choose ModelNet40-C [3] as weak OOD,
which consists of 15 common corruptions of point cloud
data, with 9,843 training samples and 2,468 test sam-
ples. We select random noise and the 3D representation of
MNIST [4] as strong OOD.
Training Details: We follow [2] and use the DGCNN [5],
with learning rate α=1e-4, batch size NB = 64, λ = 1.
Results: We observe from the results in Tab. 5 that our
method outperforms all competing methods on the point
cloud datasets. The results demonstrate that our proposed
method also exhibits a strong fit for 3D point cloud data,
showcasing its potential for broader application in various
fields.

7. Adaptive Threshold VS Fixed Threshold
We visualize testing samples on CIFAR10-C with SVHN

as strong OOD via t-SNE in Fig. 1 to compare the fixed
threshold and our adaptive threshold. Green, black and
red dots indicate correctly classified weak OOD samples,
correctly classified strong ODD samples and misclassified
samples respectively. We clearly observe fewer misclassi-
fied samples with adaptive thresholds, suggesting the ad-
vantage.

(a) Adaptive Threshold (b) Fixed Threshold

Figure 1: T-SNE visualizations of adaptive threshold and
fixed threshold on CIFAR10-C with SVHN as strong OOD.

8. Dynamic Representations
We further present a t-SNE visualization at four different

stages (indicated by the percentage TTT progress) of TTT in



Table 2: Open-world test-time training under ViT backbone.

Method Noise MNIST SVHN Tiny-ImageNet CIFAR100-C

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

TEST 86.22 100.00 92.60 82.24 96.52 88.81 78.82 92.71 85.20 82.29 71.41 76.46 80.48 76.50 78.44
TENT 88.56 99.93 93.90 87.49 91.65 89.52 75.98 49.51 59.95 84.16 61.63 71.16 78.91 56.50 65.85
SHOT 89.37 85.88 87.59 85.68 76.18 80.65 78.17 50.93 61.67 89.22 63.13 73.94 86.44 62.96 72.85
TTAC 90.14 100.00 94.81 77.28 54.01 63.58 85.03 92.51 88.61 85.55 68.09 75.82 85.30 74.06 79.29
OURS 92.47 100.00 96.09 73.67 65.22 69.19 89.53 98.50 93.80 90.30 78.75 84.13 83.12 82.97 83.05

Table 3: The performance of our method under different random seeds.

Seed Noise MNIST SVHN Tiny-ImageNet CIFAR100-C

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

#1 85.46 98.60 91.56 83.89 97.83 90.32 84.99 87.94 86.44 71.77 84.71 77.70 74.08 84.64 79.01
#2 85.00 98.40 91.21 84.40 99.12 91.17 85.19 88.38 86.76 72.63 83.25 77.58 75.69 85.09 80.11
#3 85.57 98.79 91.71 84.48 99.01 91.17 85.26 87.94 86.58 72.46 82.37 77.10 73.89 84.09 78.66
#4 85.35 98.37 91.40 84.04 98.14 90.54 85.29 89.62 87.40 71.82 84.09 77.47 75.00 85.74 80.01

Table 4: The performance of our method under different thresholding rates.

Rate Noise MNIST SVHN Tiny-ImageNet CIFAR100-C

AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH AccS AccN AccH

25% 84.25 97.64 90.45 83.68 97.65 90.13 84.88 84.88 84.88 72.83 80.04 76.26 75.0 79.83 77.34
50% 85.39 98.69 91.56 83.89 97.71 90.27 85.00 88.03 86.49 71.77 84.71 77.70 74.22 84.39 78.98
75% 85.87 98.82 91.89 84.22 97.95 90.57 85.00 90.99 87.89 69.44 84.94 76.41 72.69 86.70 79.08

100% 85.17 97.12 90.76 84.07 97.63 90.35 84.56 92.84 88.51 67.25 85.37 75.23 69.12 87.50 77.23

Table 5: Open-world test-time training on point cloud data.

Method Noise 3DMNIST

AccS AccN AccH AccS AccN AccH

TEST 44.77 88.77 59.52 42.11 79.94 55.16
BN 58.06 85.20 69.06 47.81 69.72 56.73
TENT 19.50 60.37 29.47 17.33 57.22 26.60
SHOT 62.75 79.79 70.25 61.58 78.74 69.11
TTAC 49.99 87.20 63.55 43.97 77.02 55.98
OURS 69.15 93.39 79.46 59.24 88.95 71.12

Fig. 2. It is obvious that different semantic classes (colorful
dots) become better separated as TTT progresses and the
strong OOD samples (black dots) are always well separated
from weak OOD ones.

(a) 0% (b) 33% (c) 67% (d) 100%

Figure 2: T-SNE visualizations on CIFAR10-C with SVHN
as strong OOD samples as TTT progresses.
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