
Appendix

A. Overview

To make our end-to-end predictive visual tracking frame-
work (PVT++) reproducible, we present the detailed config-
uration in Appendix B, covering the specific model struc-
ture, the training settings (with specific hyper-parameters),
and the inference settings. Moreover, we provide the
PVT++ code library and official models to ensure reprodu-
cability. For clear reference of the notations used in method
section, we provide a notation table in Appendix C. In Ap-
pendix D, we display representative qualitative visualiza-
tion results from the authoritative datasets, UAV123 [47],
UAV20L [47], DTB70 [37], and UAVDT [16], where
the superiority of our PVT++ is clearly shown. In Ap-
pendix E, we present detailed results comparison between
KF [30] and PVT++ to better demonstrate the superiority
of our method. In addition to convolution neural network
backbone[26, 53, 55]-based trackers, PVT++ further works
for transformer-based ones [60, 11], which is presented in
Appendix F. In Appendix G, we show that PVT++ is more
efficiency and introduces much less extra latency onboard
compared with other trajectory preductors [24, 63, 40]. We
also tried to fuse the motion and visual cues earlier in Ap-
pendix H, where we give an analysis to the strategy adopted
in PVT++. The full attribute-based results from all the four
datasets [47, 37, 16] are reported in Appendix I, where we
exhaustively analyse the specific advantages of two modal-
ities for prediction under various UAV tracking challenges.
The training process of different PVT++ models is visual-
ized in Appendix J, where we present the loss curves to in-
dicate the converging process. The extra latency introduced
by the PVT++ predictor modules is unavoidable, which can
have some negative effect to online performance. We pro-
vide such analysis in Appendix K. We further find PVT++
is capable of converging well in smaller training set (us-
ing only 3563 videos from Imagenet VID [52]), which is
shown in Appendix L. Finally, we present additional real-
world tests in Appendix M, covering more target objects
and tracking scenes.

B. Detailed Configuration

Specific Model Structure. Corresponding to Fig. 4 in the
paper, we present the detailed model structure of each layer
in Table I. Consider B batch inputs and k history frames,
the output sizes are also shown in Table I for clear refer-
ence. Subscripts are used to distinguish between different
layers, i.e., ·t denotes encoding layer for template feature, ·s
denotes encoding layer for search feature, ·e denotes encod-
ing layer for the similarity map. ·a represents the auxiliary
branch.
Remark 5: These structures are general for all the four im-

Table I. Detailed structure and output sizes of PVT++ models. We
use subscript to distinguish between different layers. The output
sizes correspond to B batch input.

Branch Layer Kernel Cin Cout Out. Size

Motion
FC - 8 32 B × k × 32

1D Conv 3 32 32 B × k × 32
Avg. Pool - 32 32 B × 32

Visual

2D Convt 3 × 3 256 64 B × k × 64 × 29 × 29
2D Convs 3 × 3 256 64 B × k × 64 × 25 × 25
2D Conve 1 × 1 64 64 B × k × 64 × 25 × 25
3D Conv 3 × 3 × 3 64 64 B × k × 64 × 25 × 25
Avg. Pool - 64 64 B × 64
2D Conva 1 × 1 64 64 B × k × 64 × 25 × 25
2D Conva 1 × 1 64 4 B × k × 4 × 25 × 25
Avg. Poola - 4 4 B × k × 4

Shared
FC - [32, 64, 96] 32 B × 32
FC - 32 32 B × N × 32
FC - 32 4 B × N × 4

Table II. List of the important notations in this work.
Symbol Meaning Dimension

f World frame number R
If f -th image frame RW×H×3

j Serial number of the processed frame R
fj World frame id of the processed j-th frame R
tW
f

World timestamp R
tT
fj

Tracker timestamp R

ϕ(f), ϕ(f)e Input frame id to be paired with frame f R
σ Permitted latency during evaluation R

rf = [xf , yf , wf , hf ] Raw output by the tracker in frame f R1×4

b̂f = [x̂f , ŷf , ŵf , ĥf ] Final output bounding box to be evaluated R1×4

T Tracker model −
P Predictor model −

mfj
Normalized input motion from fj−1 to fj R1×4

pfj
Average moving speed from fj−k+1 to fj R1×4

m̂f Predicted motion from ϕ(f) to f R1×4

mf Ground-truth motion from ϕ(f) to f R1×4

∆f Frame interval between the latest and the f -th frame R
∆x̂(f),∆ŷ(f) Predicted distance between the f -th and ϕ(f)-th frame R

∆x(fj),∆y(fj) Distance from rfj
to rfj−1

R

xϕ(f) Search patch feature in frame ϕ(f) RC×W×H

z Template feature RC×a×a

k(= 3) Number of past frames R
N Number of the parallel FC layers in the decoder R

plemented base trackers [33, 57, 22].
Training Settings. All the predictive modules need tem-
poral video data for training. However, to our disappoint-
ment, existing training pipeline [33] takes a detection-like
paragdim. Basically, the raw search patches are indepen-
dently cropped from the object center location, then the
random shift, padding are applied to generated the training
search patch. In this case, the training patches from consec-
utive frames actually contain no temporal information.

To solve this, we construct a new pipeline termed as dy-
namic temporal training. The search patch from fj-th frame
is cropped around the object’s center location in the previ-
ous frame Ifj−1 , so that past motion Mϕ(f) and past search
patch Xϕ(f) correspond to each other and contain real tem-
poral information from Ifj−k+1

to Ifj .
Remark 6: The new training pipeline is dynamic, i.e.,
[fj−k, fj−k+1, · · · , fj ] can be adjusted as hyper-parameters
to fit different models’ different latency.



Table III. Per dataset results of different predictor modules. For all the three base trackers in various datasets, our PVT++ generally
outperforms previous standard KF solutions [36, 32] and stronger learnable KF baselines, KF† and KF‡.

Dataset DTB70 UAVDT UAV20L UAV123
Tracker Pred. AUC@La0 DP@La0 AUC@La0 DP@La0 AUC@La0 DP@La0 AUC@La0 DP@La0

SiamRPN++M

(21FPS)

N/A 0.305 0.387 0.494 0.719 0.448 0.619 0.472 0.678
KF [36] 0.349 0.482 0.527 0.737 0.458 0.624 0.515 0.712

PVT [32] 0.377 0.518 0.533 0.740 0.458 0.624 0.522 0.722
KF† [50] 0.367 0.504 0.519 0.732 0.466 0.630 0.511 0.703
KF‡ [25] 0.365 0.496 0.563 0.780 0.483 0.658 0.513 0.598

PM (Ours) 0.385 0.523 0.529 0.745 0.481 0.647 0.537 0.737
PV (Ours) 0.352 0.472 0.564 0.799 0.488 0.675 0.504 0.703
PMV (Ours) 0.399 0.536 0.576 0.807 0.508 0.697 0.537 0.741

SiamMask
(12FPS)

N/A 0.247 0.313 0.455 0.703 0.405 0.571 0.436 0.639
KF [36] 0.294 0.407 0.535 0.758 0.436 0.582 0.499 0.679

PVT [32] 0.362 0.504 0.539 0.751 0.443 0.598 0.514 0.701
KF† [50] 0.349 0.486 0.530 0.749 0.440 0.588 0.513 0.702
KF‡ [25] 0.348 0.468 0.558 0.775 0.465 0.629 0.502 0.683

PM (Ours) 0.370 0.508 0.531 0.760 0.449 0.607 0.532 0.743
PV (Ours) 0.292 0.405 0.532 0.777 0.430 0.601 0.503 0.705
PMV (Ours) 0.342 0.463 0.566 0.797 0.469 0.644 0.536 0.749

SiamRPN++M

(21FPS)

N/A 0.136 0.159 0.351 0.594 0.310 0.434 0.349 0.505
KF [36] 0.189 0.232 0.451 0.667 0.387 0.528 0.415 0.582

PVT [32] 0.201 0.254 0.467 0.687 0.396 0.547 0.434 0.605
KF† [50] 0.200 0.254 0.460 0.680 0.412 0.572 0.433 0.603
KF‡ [25] 0.204 0.252 0.504 0.728 0.406 0.549 0.432 0.599

PM (Ours) 0.199 0.258 0.449 0.684 0.404 0.560 0.442 0.627
PV (Ours) 0.179 0.225 0.403 0.665 0.398 0.548 0.398 0.559
PMV (Ours) 0.205 0.256 0.488 0.726 0.416 0.568 0.442 0.619

All the PVT++ models are optimized by AdamW [45].
The motion predictor is trained for 100 epochs with a base
learning rate equalling to 0.03, which is multiplied by 0.1 at
epoch 30 and 80. The visual and multi-modal predictors are
trained for 300 epochs with a base learning rate of 0.003,
which is multiplied by 0.1 at epoch 200. In all the four
base trackers [33, 57, 22], PV and PMV both take the visual
feature from the neck to implement vision-aided prediction.
During joint training, the tracker backbone is fixed and the
tracker neck, together with the head are freed in the first 20
epochs with a small learning rate of 10−5.

A ”fast” tracker may only need to predict future three
frames to compensate for its latency, while a ”slow” one
may have to output ten future state. To make this pos-
sible, the second last layer of PVT++ predictive decoder
is N parallel fully connected layers for predicting N fu-
ture state, i.e., future 1 ∼ N frames. Therefore, differ-
ent models vary in the pre-defined N and ∆f during train-
ing. we set N = 3,∆f = [1 : 3] for SiamRPN++M

[33], N = 12,∆f = [1 : 12] for SiamRPN++R [33],
N = 6,∆f = [1 : 6] for SiamMask [57], and N = 4,∆f =
[1 : 3] for SiamGAT [22]. Note that these hyper-parameter
are roughly determined by the averaged latency of the base
trackers.
Inference Settings. During inference, when fj+1−th
frame comes, the predictor P first conducts (fj+1 − fj)
to fj+1 + N frames prediction with k = 3 past frames in-
formation, then the tracker processes fj+1 − th frame and

Table IV. Efficiency and complexity comparison between PVT++
and other motion predictors [24, 63, 40]. Our framework is
10x∼100x faster than other works.

Input Traj. Traj. + RGB

Model Social GAN [24] SR-LSTM [63] PM NEXT [40] PMV

MACs 5.6M 51.7M 0.05M 2.7G 1.2G
Latency (ms) 50.2 652.0 4.2 181.6 8.6

Table V. Effect of PVT++ on transformer-based trackers [60, 11].
Our framework can boost the perfromance by up to 40%.

Dataset DTB70 UAVDT

Metric AUC@La0 DP@La0 AUC@La0 DP@La0
PVT++ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

OSTrack [60] 0.306 0.400 0.375 0.535 0.533 0.626 0.789 0.839
MixFormer [11] 0.198 0.250 0.242 0.320 0.413 0.516 0.644 0.719

updates the history information (motion and visual).
Note that we take the latency of both tracker and predic-

tor modules into account in the online evaluation.

C. Complete Notation Reference Table
We provide the important notations, their meaning, and

dimension in Table II, for clear reference.

D. Visualization
We present some typical tracking visualization in Fig. I.

The sequences, ManRunning2, Paragliding5, Wakeboard-
ing1, and Wakeboarding2 are from DTB70 [37].S0303,
S0304, S0310, and S1604 are from UAVDT [16]. In



ManRunning2

#0001 #0008 #0063
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Wakeboarding2

#0001 #0038 #0058

S0303

#0001 #0045 #0142
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#0001 #0124 #0554
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#0001 #0318 #0647

uav1_2

#0001 #0418 #0497

Baseline Baseline + Ground-truth
Figure I. Representative sequences from authoritative UAV tracking datasets, DTB70 [37], UAVDT [16], UAV20L [47], and UAV123 [47].
We use dashed red lines to demonstrate the original trackers, which are severely affected by onboard latency. Coupled with our PVT++
(PMV), the robustness can be significantly improved (solid red boxes). Green boxes denote ground-truth. Some typical sequences are also
made into supplementary video for better reference.

Table VI. Results comparison between two fusion strategy. PMV

denotes our default PVT++, the modalities fuse after independent
temporal interaction (late fusion). P†

MV indicates that the two cues
fuse before temporal interaction (early fusion).

DTB70 UAVDT
Pred. AUC@La0 DP@La0 AUC@La0 DP@La0

N/A 0.305 0.387 0.494 0.719
PMV (late fuse) 0.399 0.536 0.576 0.807
P†

MV (early fuse) 0.370 0.498 0.571 0.800

UAV20L and UAV123 [47], we also present car3, car17,
group2 2, and uav1 2. With extremely limited onboard
computation, the original trackers (red dashed boxes) will
easily fail due to high latency. Once coupled with our
PVT++ (PMV), the models (solid red boxes) are much more
robust. We use greed boxes to denote ground-truth.

E. Prediction Quantitative Comparison
To provide a thorough quantitative comparison of the

predictor performance, we reported the results per dataset
in Table III. We observe that for different tracker models in
various benchmarks, PVT++ is more robust than prior solu-
tions [32, 36]. Compared with learnable KFs, KF† and KF‡,
our PVT++ holds obvious advantage by virtue of the visual

cue and joint learning.

F. Effect on Transformer-based Trackers
For transformer-based trackers, MixFormer [11] and OS-

Track [60] (∼6 and ∼10 FPS onboard), PVT++ yields up to
40% improvement as shown in Table V.

G. Efficiency and Complexity Comparison

PVT++ is a lightweight plug-and-play framework de-
signed for latency-aware tracking, while most existing tra-
jectory predictors are computationally heavy. As in Ta-
ble IV, PVT++ is 10x∼100x faster than existing trajectory
predictors and introduces much less extra latency onboard.

H. Fusion Strategy Comparison
As introduced in the paper, inside PVT++, the three

modules, Feature encoder, temporal interaction, and pre-
dictive decoder run one after another. For the default set-
ting, the fusion of the motion and visual cues happens af-
ter temporal interaction, using the concatenate function.
Here, we also tried to integrate the two modality earlier be-
fore temporal interaction and right after feature encoder,



Table VII. Attribute-based analysis of the three trackers with PVT++ models in DTB70 [37] dataset.

Tracker SiamRPN++M

(21FPS)
SiamRPN++R

(5FPS)
SiamMask
(12FPS)

Metric Att. N/A PM PV PMV N/A PM PV PMV N/A PM PV PMV

AUC@La0

ARV 0.330 0.386 0.349 0.418 0.156 0.233 0.214 0.253 0.247 0.375 0.291 0.393
BC 0.257 0.330 0.276 0.319 0.079 0.077 0.102 0.102 0.168 0.264 0.202 0.167

DEF 0.357 0.410 0.358 0.438 0.144 0.217 0.198 0.241 0.253 0.398 0.287 0.364
FCM 0.277 0.373 0.333 0.376 0.091 0.144 0.122 0.138 0.195 0.327 0.258 0.301
IPR 0.302 0.368 0.324 0.387 0.133 0.187 0.169 0.204 0.217 0.346 0.256 0.316
MB 0.198 0.305 0.277 0.321 0.056 0.073 0.069 0.085 0.147 0.236 0.187 0.254
OCC 0.280 0.337 0.281 0.304 0.149 0.214 0.204 0.224 0.233 0.290 0.285 0.274
OPR 0.278 0.314 0.334 0.439 0.161 0.158 0.208 0.225 0.202 0.360 0.265 0.362
OV 0.292 0.405 0.372 0.399 0.054 0.099 0.076 0.102 0.168 0.227 0.258 0.289
SV 0.354 0.470 0.419 0.489 0.145 0.187 0.192 0.220 0.278 0.435 0.347 0.418

SOA 0.238 0.301 0.261 0.302 0.140 0.196 0.184 0.200 0.227 0.326 0.275 0.315

DP@La0

ARV 0.340 0.466 0.385 0.498 0.101 0.220 0.171 0.234 0.247 0.474 0.333 0.472
BC 0.352 0.477 0.396 0.498 0.118 0.106 0.141 0.139 0.228 0.385 0.291 0.237

DEF 0.374 0.512 0.398 0.525 0.083 0.203 0.144 0.214 0.246 0.509 0.326 0.449
FCM 0.363 0.517 0.470 0.525 0.106 0.188 0.156 0.171 0.241 0.456 0.353 0.414
IPR 0.349 0.475 0.398 0.495 0.124 0.212 0.170 0.224 0.236 0.454 0.310 0.400
MB 0.246 0.418 0.379 0.453 0.051 0.110 0.090 0.088 0.167 0.349 0.248 0.327
OCC 0.408 0.496 0.426 0.459 0.223 0.327 0.316 0.344 0.361 0.439 0.458 0.404
OPR 0.213 0.312 0.317 0.453 0.083 0.083 0.113 0.127 0.128 0.382 0.224 0.357
OV 0.413 0.590 0.564 0.586 0.062 0.166 0.101 0.161 0.222 0.363 0.385 0.439
SV 0.366 0.569 0.467 0.569 0.123 0.186 0.180 0.208 0.287 0.528 0.402 0.492

SOA 0.333 0.432 0.379 0.447 0.217 0.306 0.295 0.302 0.340 0.479 0.429 0.462

Table VIII. Attribute-based analysis of the three trackers with PVT++ models in UAVDT [16] dataset.

Tracker SiamRPN++M

(21FPS)
SiamRPN++R

(5FPS)
SiamMask
(12FPS)

Metric Att. N/A PM PV PMV N/A PM PV PMV N/A PM PV PMV

AUC@La0

BC 0.448 0.461 0.504 0.505 0.332 0.410 0.375 0.445 0.404 0.465 0.488 0.520
CR 0.450 0.495 0.520 0.535 0.296 0.371 0.402 0.452 0.425 0.503 0.498 0.522
OR 0.438 0.481 0.538 0.549 0.318 0.389 0.416 0.477 0.404 0.491 0.504 0.541
SO 0.494 0.549 0.525 0.545 0.318 0.420 0.361 0.457 0.468 0.536 0.495 0.540
IV 0.539 0.578 0.588 0.599 0.382 0.495 0.459 0.537 0.475 0.558 0.563 0.596
OB 0.525 0.542 0.568 0.589 0.382 0.460 0.408 0.498 0.471 0.542 0.527 0.560
SV 0.490 0.505 0.584 0.586 0.366 0.422 0.406 0.484 0.438 0.526 0.541 0.566
LO 0.422 0.521 0.436 0.511 0.320 0.379 0.368 0.429 0.389 0.421 0.494 0.520

DP@La0

BC 0.659 0.666 0.733 0.727 0.591 0.637 0.647 0.671 0.628 0.672 0.718 0.731
CR 0.643 0.684 0.720 0.732 0.462 0.585 0.572 0.645 0.620 0.702 0.696 0.712
OR 0.638 0.681 0.753 0.764 0.515 0.619 0.606 0.688 0.612 0.709 0.723 0.752
SO 0.779 0.815 0.793 0.814 0.645 0.711 0.706 0.759 0.803 0.818 0.787 0.819
IV 0.777 0.811 0.835 0.848 0.657 0.747 0.755 0.801 0.743 0.797 0.817 0.829
OB 0.772 0.778 0.822 0.846 0.676 0.714 0.700 0.766 0.756 0.802 0.801 0.813
SV 0.680 0.691 0.796 0.794 0.581 0.618 0.622 0.684 0.650 0.729 0.763 0.783
LO 0.569 0.717 0.585 0.694 0.504 0.554 0.566 0.608 0.571 0.590 0.696 0.711

still adopting concatenation. The results comparison of two
strategies is shown in Table VI, where we find both are ef-
fective and the late fusion is better.

I. Full Attribute-based Analysis
We present full attribute-based analysis in Table VII, Ta-

ble VIII, Table IX, and Table X. Following the previous
work [37], we report results on aspect ratio variation (ARV),
background clutter (BC), deformation (DEF), fast camera
motion (FCM), in-plane rotation (IPR), motion blur (MB),
occlusion (OCC), out-of-plane rotaTion (OPR), out-of-view
(OV), scale variation (SV), and similar object around (SOA)
in Table VII. As shown in Table VIII, results on back-

ground clutter (BC), camera rotation (CR), object rotation
(OR), small object (SO), illumination variation (IV), ob-
ject blur (OB), scale variation (SV), and large occlusion
(LO), are reported for UAVDT [16]. For UAV20L and
UAV123 [47], we present results on scale variation (SV), as-
pect ratio change (ARC), low resolution (LR), fast motion
(FM), full occlusion (FOC), partial occlusion (POC), out-
of-view (OV), background clutter (BC), illumination vari-
ation (IV), viewpoint change (VC), camera motion (CM),
and similar object (SO) in Table IX and Table X.

We observe that the two modalities has their own ad-
vantage in different UAV tracking challenges. For exam-
ple, consider UAVDT dataset [16] (Table VIII), the visual



Table IX. Attribute-based analysis of the three trackers with PVT++ models in UAV20L [47] dataset.

Tracker SiamRPN++M

(21FPS)
SiamRPN++R

(5FPS)
SiamMask
(12FPS)

Metric Att. N/A PM PV PMV N/A PM PV PMV N/A PM PV PMV

AUC@La0

SV 0.437 0.470 0.483 0.500 0.300 0.395 0.392 0.410 0.395 0.437 0.420 0.461
ARC 0.425 0.411 0.438 0.451 0.291 0.352 0.360 0.371 0.373 0.409 0.392 0.438
LR 0.267 0.354 0.344 0.352 0.215 0.295 0.276 0.279 0.244 0.263 0.275 0.290
FM 0.410 0.357 0.394 0.418 0.269 0.304 0.325 0.315 0.319 0.375 0.329 0.442

FOC 0.256 0.272 0.234 0.241 0.170 0.227 0.184 0.164 0.221 0.237 0.231 0.255
POC 0.418 0.480 0.463 0.478 0.286 0.379 0.380 0.396 0.378 0.417 0.430 0.441
OV 0.438 0.512 0.476 0.492 0.272 0.356 0.394 0.405 0.377 0.428 0.448 0.462
BC 0.225 0.258 0.229 0.250 0.119 0.215 0.153 0.159 0.189 0.198 0.210 0.210
IV 0.452 0.414 0.470 0.491 0.303 0.393 0.379 0.403 0.426 0.437 0.382 0.443
VC 0.472 0.450 0.466 0.488 0.302 0.339 0.377 0.384 0.395 0.436 0.420 0.475
CM 0.431 0.463 0.475 0.491 0.297 0.393 0.388 0.406 0.391 0.432 0.412 0.452
SO 0.482 0.519 0.557 0.567 0.399 0.531 0.477 0.491 0.487 0.519 0.438 0.492

DP@La0

SV 0.600 0.630 0.662 0.683 0.417 0.544 0.536 0.556 0.552 0.588 0.581 0.627
ARC 0.591 0.562 0.606 0.624 0.408 0.487 0.486 0.503 0.524 0.558 0.550 0.603
LR 0.444 0.545 0.539 0.548 0.388 0.483 0.465 0.456 0.422 0.414 0.458 0.465
FM 0.631 0.548 0.595 0.625 0.417 0.464 0.495 0.476 0.518 0.573 0.524 0.667

FOC 0.469 0.473 0.436 0.428 0.358 0.423 0.358 0.324 0.425 0.420 0.431 0.459
POC 0.585 0.654 0.648 0.669 0.410 0.530 0.531 0.548 0.540 0.570 0.606 0.613
OV 0.597 0.683 0.658 0.679 0.356 0.473 0.518 0.540 0.529 0.578 0.618 0.630
BC 0.426 0.440 0.399 0.434 0.284 0.398 0.304 0.295 0.378 0.349 0.390 0.385
IV 0.628 0.560 0.649 0.686 0.428 0.551 0.503 0.539 0.595 0.590 0.545 0.617
VC 0.616 0.571 0.605 0.631 0.364 0.420 0.452 0.477 0.518 0.551 0.546 0.611
CM 0.599 0.629 0.660 0.681 0.417 0.544 0.534 0.553 0.550 0.588 0.580 0.626
SO 0.604 0.652 0.719 0.734 0.498 0.645 0.594 0.609 0.610 0.648 0.559 0.619

Table X. Attribute-based analysis of the three trackers with PVT++ models in UAV123 [47] dataset.

Tracker SiamRPN++M

(21FPS)
SiamRPN++R

(5FPS)
SiamMask
(12FPS)

Metric Att. N/A PM PV PMV N/A PM PV PMV N/A PM PV PMV

AUC@La0

SV 0.456 0.518 0.488 0.514 0.338 0.423 0.383 0.427 0.420 0.509 0.480 0.518
ARC 0.413 0.496 0.468 0.491 0.315 0.402 0.365 0.406 0.398 0.498 0.467 0.510
LR 0.291 0.357 0.328 0.350 0.179 0.264 0.214 0.256 0.257 0.364 0.324 0.257
FM 0.373 0.430 0.461 0.482 0.261 0.316 0.307 0.341 0.333 0.425 0.422 0.447

FOC 0.254 0.317 0.270 0.306 0.191 0.251 0.214 0.246 0.242 0.325 0.284 0.303
POC 0.401 0.436 0.402 0.446 0.284 0.373 0.335 0.374 0.363 0.449 0.426 0.459
OV 0.442 0.489 0.488 0.516 0.289 0.394 0.368 0.407 0.403 0.504 0.476 0.492
BC 0.254 0.293 0.247 0.296 0.188 0.258 0.215 0.247 0.248 0.360 0.307 0.309
IV 0.365 0.421 0.423 0.465 0.310 0.379 0.352 0.381 0.378 0.480 0.441 0.466
VC 0.459 0.552 0.506 0.558 0.322 0.409 0.387 0.432 0.407 0.534 0.499 0.548
CM 0.466 0.542 0.514 0.535 0.319 0.421 0.381 0.422 0.420 0.529 0.502 0.522
SO 0.478 0.497 0.444 0.459 0.362 0.462 0.382 0.435 0.434 0.492 0.464 0.514

DP@La0

SV 0.657 0.714 0.679 0.710 0.488 0.599 0.594 0.537 0.614 0.711 0.671 0.720
ARC 0.602 0.689 0.651 0.678 0.453 0.575 0.502 0.561 0.588 0.701 0.656 0.715
LR 0.548 0.595 0.568 0.586 0.392 0.488 0.471 0.438 0.510 0.621 0.554 0.637
FM 0.517 0.591 0.617 0.646 0.323 0.417 0.368 0.429 0.450 0.588 0.564 0.609

FOC 0.497 0.550 0.489 0.533 0.387 0.460 0.406 0.448 0.460 0.569 0.505 0.541
POC 0.614 0.630 0.586 0.640 0.440 0.556 0.497 0.542 0.553 0.653 0.619 0.664
OV 0.632 0.670 0.674 0.715 0.372 0.533 0.467 0.533 0.556 0.701 0.653 0.685
BC 0.474 0.475 0.436 0.489 0.407 0.470 0.411 0.444 0.473 0.587 0.512 0.526
IV 0.546 0.594 0.586 0.644 0.447 0.541 0.521 0.486 0.550 0.674 0.623 0.664
VC 0.654 0.743 0.681 0.746 0.443 0.575 0.512 0.586 0.587 0.735 0.683 0.744
CM 0.668 0.748 0.713 0.735 0.440 0.587 0.514 0.573 0.606 0.737 0.699 0.734
SO 0.714 0.703 0.625 0.647 0.554 0.681 0.568 0.639 0.650 0.691 0.671 0.724

branch is relatively good at challenges like camera rotation
(CR), object rotation (OR), and scale variation (SV), where
the object motion could be very complex and the visual ap-
pearance is helpful in prediction. On the other hand, mo-
tion cues are robust when the visual feature is not reliable,
for instance, similar object (SO) and large occlusion (LO)

challenge. In general, motion predictor is better than vi-
sual predictor, from which we conclude that past motion
is still the main cue to inference future motion. While for
the challenging UAV tracking, where motion could be ex-
tremely random and dynamic, introducing visual cues can
significant improve the prediction robustness. Together, the
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Figure II. Training loss curves of PVT++ models. Coupled with visual feature, PMV can better learn to predict than PM, thus the loss is
observed to be smaller. Without auxiliary branch, the loss curve is less smooth, indicating the importance of A.

Table XI. Effect of extra latency brought by PVT++ in UAVDT [16] dataset. Here, the base tracker takes SiamRPN++M, whose original
latency is fixed to 44.5 ms/frame (its average onboard latency). We use ·† to indicate neglecting the latency. With ∼5ms/frame extra time,
the performance is slightly lower (2∼3% performance drop), while it is acceptable and still brings upto 15% performance gain.

Model Tracker Tracker+P†
MV Tracker+PMV

Metric mAUC∆% mDP∆% Latency mAUC∆% mDP∆% Latency mAUC∆% mDP∆% Latency
Result 0.494+0.00 0.719+0.00 44.5ms 0.587+18.8 0.825+14.7 44.5ms 0.576+16.6 0.807+12.2 50.0ms

Table XII. Performance of PVT++ models trained with different datasets. Full denotes ∼9,000 videos from VID [52], LaSOT [18], and
GOT-10k [28]. VID indicates using only ∼3,000 videos from VID [52]. AVG means average results on the four test datasets. Since PVT++
utilizes the trained tracking models, We observe the training are not very sensitive to the scale of training set.

Dataset DTB70 UAVDT UAV20L UAV123 AVG

PVT++ Training mAUC mDP mAUC mDP mAUC mDP mAUC mDP mAUC mDP

PV
Full 0.352 0.472 0.564 0.799 0.488 0.675 0.504 0.703 0.477 0.662
VID 0.362 0.483 0.519 0.752 0.497 0.694 0.513 0.731 0.473 0.665

PMV
Full 0.399 0.536 0.576 0.807 0.508 0.697 0.537 0.741 0.505 0.695
VID 0.405 0.554 0.53 0.757 0.511 0.701 0.534 0.745 0.495 0.689

jointly optimized model PMV is the most reliable for UAV
latency-aware vsiaul tracking.

J. Training Visualization

The training loss curves of PVT++ models with
SiamRPN++M [33] is shown in Fig. II. Compared with mo-
tion predictor PM, the joint predictor PMV can better learn
to predict, resulting in smaller training loss. We also com-
pared the losses from models with (c) or without (d) the
auxiliary branch A. Without A, the loss curve fluctuates a
lot, indicating that the model can’t converge very well. We
also noted that in terms of extra latency, PVT++ can achieve
similar or smaller negative results compared to KFs. We as-
sume this is because larger matrix operation can be more
effectively realized on GPU, compared with small matrix
on CPU/GPU.

K. Effect of Extra Latency

PVT++ will bring a bit extra latency during online per-
ception, which is negative for the performance. As shown
in Table XI, the latency of original tracker [33] is about 45
ms/frame. Ignoring the predictor’s latency, the online per-
formance can reach 0.587 mAUC and 0.825 mDP. Taking
the extra latency of ∼ 5 ms/frame into account, the result
will slightly suffer, decreasing to 0.576 mAUC and 0.807

mDP. Therefore, though PVT++ introduces extra latency,
the online performance can still be significantly improved
by more than 10%.

L. Training Set Analysis

Since PVT++ models can make full use of a trained
tracker model, we find PV and PMV not very sensitive to
the scale of training set. As shown in Table XII, trained
with only ∼3,000 videos from VID [52], our PVT++ can
still converge well and achieve on par performance com-
pared with the fully trained models.

M. More Real-World Tests

In addition to the four real-world tests in Sec. 6.5 of the
main paper, we present six more tests (together eight tests)
in Fig. III, where we implemented the models on a real
UAV and performed several flights. The real-world tests
involve two non-real-time trackers, SiamRPN++M [33] (∼
15.57 FPS in the tests) and SiamMask [57] (∼ 11.95 FPS in
the tests), which are largely affected by their high onboard
latency. Coupled with our PVT++ (PMV), the predictive
models work well under various tracking scenes, e.g., as-
pect ratio change in Test 1, dark environment in Test 2, 5,
7, and 8, view point change in Test 3, and occlusion in Test
2. The real-world tests also cover various target objects like
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Figure III. Eight real-world tests of PVT++ on non-real-time trackers, SiamMask [57] and SiamRPN++M [33]. We present the tracking
scenes, the target objects, and center location error (CLE) in the figure. Under various challenges like aspect ration change, illumination
variation, low resolution, PVT++ maintains its robustness, with CLE below 20 pixels in most frames.

person, building, car, and island, as shown in Fig. III. We
have made them into videos for clear reference. The robust-
ness of PVT++ in the onboard tests validate its effectiveness
in the real-world UAV tracking challenges.


