
Supplementary Materials:
Pixel Adaptive Deep Unfolding Transformer for Hyperspectral Image

Reconstruction

In this supplementary material, we present more analysis
and results of our proposed Pixel Adaptive Deep Unfolding
Transformer (PADUT).

• We show the detailed derivation of Half Quadratic
Splitting algorithm in Section A.

• We provide the comparison and visualization of weight
maps in Section B to further illustrate our proposed
pixel adaptive data module.

• We give a detailed analysis of our Non-local Spectral
Transformer and show ablation study in Section C.

• We show more visual comparisons between our
method and the state-of-the-art methods in Section D.

A. Detailed Derivation of HQS Algorithm
In this section, we give a detailed derivation of the Half

Quadratic Splitting (HQS) algorithm for the optimization of
x, as only a brief version was presented in the main paper.
As mentioned in the main paper, the HQS algorithm ap-
proximates the optimization of the reconstruction problem
for x through the following iterative subproblem:

xk+1 = (ΦTΦ+ µI)−1(ΦTy + µzk). (1)

For the HSI reconstruction problem, sensing matrix Φ is
a shifting binary mask and ΦΦT is a diagonal matrix:

ΦΦT = diag {ϕ1, ϕ2, ..., ϕM} , (2)

where M is the number of row in Φ. The inverse matrix in
Eq (1) can be calculated as follows:

(ΦTΦ+µI)−1 = µ−1I−µ−1ΦT (I+Φµ−1ΦT )−1Φµ−1,
(3)

where (I+Φµ−1ΦT )−1 is formulated with Eq. (2) as:

(I+Φµ−1ΦT )−1 = diag

{
µ

µ+ ϕ1
,

µ

µ+ ϕ2
, ...,

µ

µ+ ϕM

}
.

(4)
According to Eq. (4), Eq.(1) is given by:

xk+1 = [µ−1I− µ−1ΦT (I+Φµ−1ΦT )−1Φµ−1]

(ΦTy + µzk) (5)

= zk + µ−2ΦT [µI− (I+ µ−1ΦT )−1ΦΦT ]y

− µ−1ΦT (I+Φµ−1ΦT )−1Φzk (6)

= zk +ΦT y −Φzk

µI+ΦΦT
(7)

= zk +
ΦT (ΦΦT )−1

µ(ΦΦT )−1 + I
(y −Φzk). (8)

Since ΦΦT is related to the sensing matrix and is pre-
calculated, we simply the learning procedure as:

xk+1 =zk + σΦT (ΦΦT )−1(y −Φzk). (9)

In our Pixel Adaptive module, we learn 3D parameters σ
for each HSI considering the difference of each pixel in the
degradation process.

B. Visualization of Pixel Adaptive Module
In this section, we demonstrate the effectiveness of the

proposed Pixel Adaptive (PA) module. First, we replace our
PA module with other learning strategies for parameter esti-
mation. We compare our pixel adaptive module with single
parameter learning and degradation-aware (DA) proposed
in DAUHST [1]. Specifically, the details of three ways of
parameter learning are illustrated in Figure 1. Both Figure
1 (a) and Figure 1 (b) learn a single parameter, while our
PA method learns 3D parameters for pixel-level adaptive
reconstruction. Table 1 presents the quantitative results of
the three methods. As DA and our PA learn the parameters
based on the input HSI and degradation matrix, they obtain
better results than the one that only uses a learnable param-
eter. In addition, because our PA learns a weight for each
pixel, our result is more promising.

Furthermore, we conduct a visual analysis of the inter-
mediate weight map obtained by our PA module. The visu-
alization of our PA module is shown in Figure 2, where we

1



(a) Single Parameter (b) DAU [1] (c) PA (Ours)
Params 1.32M 1.36M 1.35M

GFLOPs 20.82 21.75 22.91
PSNR 36.21 36.45 36.95
SSIM 0.959 0.959 0.962

Table 1: Ablation study of different learning strategies in
the data module to learn parameter.

only show the features of one channel. Our PA module gets
different weights in different regions across the image. In
particular, it focuses more on the textured areas which are
more difficult to recover than flat areas.

C. Analysis of Non-local Spectral Transformer
In this section, we present a further analysis of our pro-

posed Non-local Spectral Transformer (NST). Firstly, we
provide a detailed introduction to our prior module, which
consists of several layers of NST and other components.
Secondly, we present additional experimental ablation re-
sults to demonstrate the effectiveness of our proposed NST.

The details of our prior module are depicted in Figure
4. In particular, a shift operation in the spatial dimension is
performed at intervals of one layer, facilitating interactions
between adjacent 3D cubes.

We compare our proposed NST with three Transformer-
based networks: Restormer [3], Swin [2], and Half Shuf-
fle Transformer (HST). HST is derived from DAUHST [1].
Additionally, we compare our NST with a variant that omits
the shift operation. We only replace the Transformer layer
and other settings keep the same. The experimental results
are presented in Table 2. Our proposed NST leverages the
features of 3D data and achieves higher PSNR with less
computation cost.

Restormer [3] Swin [2] HST [1] No-Shift NST (Ours)
Params 1.35M 1.06M 1.43N 1.35M 1.35M

GFLOPs 22.91 25.05 26.23 22.91 22.91
PSNR 36.84 35.32 36.42 36.67 36.95
SSIM 0.962 0.954 0.960 0.961 0.962

Table 2: Ablation study on the NST

D. Additional Visual Comparisons
We present additional visual results in Figure 6, along

with their corresponding spectral curves displayed in Figure
3. Traditional model-based methods (Twist and GAP-TV)
demonstrate poor performance in the magnified area. Al-
though DAUHST-9stg shows relatively effective overall re-
covery, it fails to recover sufficient detailed information. In
contrast, our method achieves the most satisfactory recon-
struction results. The corresponding spectral curves prove
that our method has superior reconstruction performance in
terms of spectral fidelity.
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Figure 1: Different learning strategies of parameter learn-
ing. (a) Learnable parameter (b) Parameter estimated from
convolutional neural network (c) Ours. Pixel-level adaptive
parameter estimation

(a) Input features of current stage

(b) Visualization of weights from corresponding PA module

Figure 2: Visualization of the features and pixel-level
weights in our PA module.

(a) Simulated scene 2 (b)Simulated scene 5

Figure 3: Spectral curves of reconstruction results on simu-
lated HSIs.

2



NST
FFT-SF

Downsample

NST
FFT-SF

Downsample

NST

NST
Upsample

NST
Upsample

𝐻 ×𝑊 × 28

𝐻 ×𝑊 × 56

SptailShift

SptailShift

SptailShift

SptailShift

𝐻 ×𝑊 × 112 𝐻 ×𝑊 × 112

𝐻 ×𝑊 × 56

𝐻 ×𝑊 × 28 𝐻 ×𝑊 × 28

𝐻 ×𝑊 × 56

𝐻 ×𝑊 × 112 𝐻 ×𝑊 × 112

𝐻 ×𝑊 × 56

𝐻 ×𝑊 × 28

𝐻 ×𝑊 × 56

𝐻 ×𝑊 × 56

𝐻 ×𝑊 × 28

𝐻 ×𝑊 × 28

𝒙𝒌 𝒛𝒌 𝒙𝒌+𝟏 𝒛𝒌+𝟏

𝐻 ×𝑊 × 56

𝐻 ×𝑊 × 56

𝐻 ×𝑊 × 56

𝐻 ×𝑊 × 56

Prior module of Stage k Prior module of Stage k+1

Figure 4: Details of prior module.
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Figure 5: Simulated HSI reconstruction results with 4 channels (channel 4, 9, 21 and 27) on scene 2.
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Figure 6: Simulated HSI reconstruction results with 4 channels (channel 4, 18, 22 and 26) on scene 5.
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