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In this supplementary material, we first introduce
the theory validation in Sec. 1. Then, we show the
training and inference algorithms in Sec. 2. Addi-
tional qualitative and quantitative comparison results
are shown in Sec. 3. In this section, we propose a
straightforward technique for achieving gender trans-
formation utilizing the proposed PAEs. Meanwhile,
we conduct disentanglement experiments in terms of
different timesteps and compare PADA with previous
method on Morph and CACD2000. Also, we mea-
sure the diversity boundary of PADA. Finally, we show
more pluralistic face aging results in Sec. 4, including
reference-guided face aging, text-guided face aging, di-
verse face aging, and intermediate generation results of
diffusion decoder.

1. Theory Validation

Theorem 1. In the normalized CLIP latent space,
according to the Law of Cosines, the Euclidean dis-
tance D(eage, etxt) between probabilistic aging embed-
ding eage and text-based age representation etxt is op-
timally equivalent to the cosine similarity.

Proof. In practice, we normalize all the features in
the CLIP latent space by L2 norm. Hence, according to
the Law of Cosines, the equivalent form of D(eage, etxt)
can be rewritten as:

D(eage, etxt) =
∥∥eage − etxt

∥∥2
2

= ∥eage∥22 +
∥∥etxt∥∥2

2
− 2 ∥eage∥2

∥∥etxt∥∥
2
cos(eage, etxt)

=2− 2cos(eage, etxt)

Therefore, when calculating the loss LtKL, the
optimization objectives for the Euclidean distance
D(eage, etxt) and cosine distance −cos(eage, etxt) are
equivalent.

Theorem 2. For directly sampling PAE from text-
based age prior, the Euclidean distance D between
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the probabilistic aging embedding eage and correspond-
ing aging text representation etxt for ∀m∗ satisfies
D(etxt, eage) ≤ m∗ with probability at least:

Prob(D(etxt, eage) ≤ m∗)

= 1−
∫ 1−m∗

2 −m∗
2ϵ

−1

Γ(d/2 + 1/2)√
πΓ(d/2)

(1− x2)d/2−1dx,

where Γ(·) is Gamma function, i.e. Γ(·) =∫∞
0

xt−1e−xdx. d is the dimension of input feature, ϵ
is hyperparameter for sampling intensity, and η is nor-
malized sampling from normal Gaussian distribution.

Proof. In practice, we normalize the features in
CLIP latent space by L2 norm.

According to the Law of Cosines, we get:

D(etxt, eage) =
∥∥etxt − eage
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)
Therefore, we find an lower bound for our original

probability:

Prob(D(etxt, eage) ≤ m∗)

≥ Prob

(
2

(
1− 1 + ϵ · (etxt)T η

1 + ϵ

)
≤ m∗

)
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(
(etxt)T η ≤ 1− m∗

2
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)
In [2], the Cumulative Distribution Function (CDF)

of the inner product of two random vectors, i.e. x =
uT v on a standard unit sphere is:



F (x) =

∫ x

−1

Γ(d/2 + 1/2)√
πΓ(d/2)

(1− x2)d/2−1dx (1)

Thus, we complete our proof:

Prob
(
D(etxt, eage) ≤ m∗)

≥ 1− Prob

(
(etxt)T η ≤ 1− m∗
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2. Details on Methods

For detailed explanation, we show the Training
pipeline and Inference pipeline of our PADA in Algo-
rithm 1 and 2, respectively.

Algorithm 1 Training stage of PADA: given a pre-
trained conditional noise prediction network ϵ(xt, t, z),
a pre-trained semantic encoder Esem, and a pre-trained
CLIP image/text encoder Eimg/Etxt

Input: source image xsrc
0 , reference image xref

0 , refer-
ence text tref , diffusion step T

Output: θ∗ (the parameters of CLIP-guided Age En-
coder Eage)

1: repeat
2: t ∼ Uniform(1, ..., T )
3: xsrc

t ∼ N (
√
αtx

src
0 , (1− αt)I)

4: xref
t ∼ N (

√
αtx

ref
0 , (1− αt)I)

5: zsrc, zref ← Esem(xsrc
0 ), Esem(xref

0 )

6: x̂src
0 ← xsrc

t√
αt
−

√
1−αt√
αt

ϵ(xsrc
t , t, zsrc)

7: x̂ref
0 ← xref

t√
αt
−

√
1−αt√
αt

ϵ(xref
t , t, zref )

8: r ← random(0, 1)
9: if r ≤ 0.5 then

10: zage ← Eage

(
Eimg(x

ref
0 )

)
11: else if r ≤ 0.8 then
12: zage ← Eage

(
Etxt(t

ref )
)

13: else
14: zage ← Eage (Eimg(x

src
0 ))

15: end if
16: ztar ← zsrc + zage

17: x̂tar
0 ← xsrc

t√
αt
−

√
1−αt√
αt

ϵ(xsrc
t , t, ztar)

18: Compute total loss L(x̂tar
0 , x̂src

0 , x̂ref
0 , tref )

19: Take a gradient step on ∇θL
20: until coveraged

Algorithm 2 Inference stage of PADA: given a pre-
trained conditional noise prediction network ϵ(xt, t, z),
a semantic encoder Esem, a pre-trained CLIP im-
age/text encoder Eimg/Etxt, and lerned CLIP-guided
age encoder Eage

Input: source image xsrc
0 , reference image xref or ref-

erence text tref , generation step T
1: xtar

T ∼ N (0, I)
2: zsrc ← Esem(xsrc

0 )
3: if image− guided then

4: zage ← Eage

(
Eimg(x

ref
0 )

)
5: else if text− guided then
6: zage ← Eage

(
Etxt(t

ref )
)

7: end if
8: ztar ← zsrc + zage

9: for t = T, ..., 1 do

10: x̂tar
0 ← xtar

t√
αt
−

√
1−αt√
αt

ϵ(xtar
t , t, ztar)

11: xtar
t−1 ←

√
αt−1x̂

tar
0 +

√
1− αt−1 · ϵ(xtar

t , t, ztar)
12: end for
Output: target aging result xtar

0 .

3. Qualitative and Quantitative Compar-
isons

We compare the continuous face aging capabilities
of our PADA with DLFS [5], SAM [1], and CUSP [4]
on CelebA-HQ test set in Fig. 1. Obviously, both the
aging accuracy and age-irrelevant information preser-
vation of our method are superior to these methods.
Meanwhile, in Fig. 2 and Fig. 3, we show more com-
parison results with the three state-of-the-art methods
on FFHQ-AT test set.

Gender Adjustment. As our PAE is proposed in
CLIP latent space and incorporates gender information
during aging training, we are able to perform gender
adjustment using the formula erec = eage ± ∆egend,
where ∆egend = em − ew and em and ew correspond
to the embeddings of ‘man’s face’ and ‘woman’s face’,
respectively. Fig. 4 displays the results obtained after
applying gender adjustment. More results can be found
in Fig. 5 and Fig. 6.

Table 1. Quantitative analysis of diversity boundaries.

Variance +Low-level
+Low-level+High-level (ϵ)
0.01 0.1 0.25 0.5

LPIPS (↑) 0.189 0.193 0.194 0.199 0.203
ID (↑) 0.668 0.649 0.633 0.617 0.593



Figure 1. Continuous face aging by interpolation in latent space. Best viewed zoomed-in.

Diversity Boundary. Following PICNet[6], we eval-
uate our diversity with LPIPS. The average score is
calculated between 1k pairs generated with and with-
out variations. In Table 1, as the sampling intensity
ϵ of high-level variations increases, the diversity score
increases, while the ID score slightly decreases. These
indicate the promising performance of our PADA for
generating diverse results while preserving identity.

Disentanglement in PADA. As shown in Fig 7,
the early denoising steps (T=25 to T=10) prioritize
shape, while the later steps (T=10 to T=0) prioritize
texture. For example, if we replace C1 with C2 in later
denoising steps, the generated texture corresponds to
C2, while the generated shape corresponds to C1. This
verifies the effectiveness of PADA for face aging.

Comparison with StyleAging [3] on Morph
and CACD2000. We compare PADA with StyleAg-
ing [3]. Since there is the domain bias between Morph
and FFHQ, so we first finetune the pretrained Dif-
fAE on Morph dataset with 2 epochs. Compared with
StyleAging [3], our method achieves better generation
quality and aging fidelity. The results are shown in
Fig 8.

Effectiveness of CLIP Space. To validate the ef-
fectiveness of CLIP feature space, we replace the CLIP
image encoder with a pre-trained age estimator and
adopt PAE in its latent space(called PADA AGE).
As shown in Fig. 9, it can generate diverse aging re-
sults, indicating the effectiveness of our PAE. However,
PADA AGE has limited flexibility, as it cannot directly



Figure 2. More comparison results with DLFS [5], SAM [1], and CUSP [4] on FFHQ-AT test set.

generate images conditioned on exact age. Addition-
ally, its generalization ability is limited, as it fails at
face aging conditioned on reference images in the wild.

4. Pluralistic Face Aging

We also show more reference-guided face aging re-
sults in Fig. 5 and Fig. 6. Amazingly, our PADA can

generate acne marks, which cannot be achieved by cur-
rent face aging methods. The text-guided face aging
results are shown in Fig. 10. More results based on
the open-world age descriptions or arbitrary unseen fa-
cial images are shown in Fig. 11. Although our PADA
has not seen both these two variants during training, it
still can generate plausible face aging results. We show
more diverse face aging results with high-level varia-



Figure 3. More comparison results with DLFS [5], SAM [1], and CUSP [4] on FFHQ-AT test set.

tions in Fig. 12 and Fig. 13. The intermediate genera-
tion results of diffusion decoder are shown in Fig. 14.
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Figure 4. Results with/without gender adjustment.
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Figure 5. Reference-guided aging results on FFHQ-AT test set.



Figure 6. Reference-guided aging results on FFHQ-AT test set.



Figure 7. Manipulation at different time (T ).

Figure 8. Comparisons on Morph(left) and CACD2000(right).

Figure 9. Compared with other feature space.



Figure 10. Text-guided aging results on FFHQ-AT test set. We apply different unseen age-related text descriptions as
conditions. Concretely, (1) ”a quite young boy”, (2) ”a daughter aged five”, (3) ”a face in his early forties ”, (4) ”a face in
his late forties”, (5) ”a face in her early forties”, (6) ”a face in her late forties”.



Figure 11. Face aging conditioned on unseen age-related descriptions and reference images in the wild. (a) Despite never
being trained with texts of ‘a very old face’, our PADA still yields plausible face aging results. (b) We can utilize arbitrary
reference images to guide the aging process.



Figure 12. Pluralistic aging results with high-level variations on FFHQ-AT test set.



Figure 13. Pluralistic aging results with high-level variations on FFHQ-AT test set.



Figure 14. The intermediate generation results of diffusion decoder.


