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This supplementary material provides more details of the
Progressive Spatio-Temporal Prototype Matching (ProST)
framework: 1) the time efficiency of ProST; 2) the pseudo
code of ProST; 3) more experiment results; 4) limitation.

1. Time Efficiency of ProST

Training time. We train our model and TS2-Net [9] on
the Pytorch framework [12]. Tab. 1 shows the training time
of ProST. Compared to TS2-Net, ProST reduces training
time by about 23.4% and 31.2% on MSRVTT-9k [16] and
DiDeMo [6]. Because ProST does not need the token se-
lection module in TS2-Net, which may take up additional
training time. More importantly, our similarity calculation
within the training batch may be much faster than TS2-Net,
which can be seen from the testing time experiment.

Testing time. The testing efficiency is crucial to eval-
uate the retrieval system. We test all models with one
NVIDIA Tesla A100 GPU. Tab. 1 shows the testing time
cost of ProST and TS2-Net. In the feature extraction stage,
TS2-Net and ProST have comparable time performance.
In the similarity search stage, ProST has only two time-
consuming matrix multiplication calculations, and does not
require frame-level weight prediction. Therefore, ProST re-
duces the search time by 7-8 times compared to TS2-Net on
MSRVTT-9k and DiDeMo.

2. Pseudo Code of ProST
Algorithm 1 provides the pseudo-code of Progressive

Spatio-Temporal Prototype Matching in a PyTorch-like
style. We decompose the vanilla matching process into two
spatio-temporal complementary parts: 1) Object-Phrase
Prototype Matching aligns the visual object prototypes and
text phrase prototypes generated by Spatial Prototype Gen-
eration to emphasize fine-grained spatial information; 2)
Event-Sentence Prototype Matching exploits event proto-
types progressively generated by Temporal Prototype Gen-
eration to learn dynamic semantic alignment, which ex-
plores intrinsic one-to-many video-text relations.

3. More Experiment Results
Experiments on YouCook2 [18]. We choose YouCook2
for performance evaluation, which has rich spatio-temporal
details. Tab.2 shows that ProST outperforms recent meth-
ods [10], especially in R@5 (23.3→30.2). This proves that
spatio-temporal matching leads to more growth on datasets
with rich spatio-temporal details.
Post-processing results. The hubness phenomenon [14] is
that some points are the nearest neighbors of most points
in high-dimensional embedding space, which is harmful
for the retrieval performance. To deal with this problem,
CAMoE [3] and QB-Norm [1] utilize inverted softmax and
query-bank normalization with dynamic inverted softmax
for the post-processing of the similarity score matrix, re-
spectively. In Tab. 3, we compare the results with the basic

Table 1. The training and testing time of TS2-Net [9] and ProST on MSRVTT-9k and DiDeMo.

Method
R@1 (Text → Video) Training time

Testing time
Feature extraction Similarity search

MSRVTT-9k DiDeMo MSRVTT-9k DiDeMo MSRVTT-9k DiDeMo MSRVTT-9k DiDeMo
TS2-Net [9] 47.0 41.8 8.1h 1.6h 47.42s 134.67s 3.54s 3.91s
ProST 48.2 44.9 6.2h 1.1h 47.88s 134.22s 0.48s 0.49s



Algorithm 1: Pseudo code of Progressive Spatio-Temporal Prototype Matching in a PyTorch-like style.
# obj p: object prototypes phr p: phrase prototypes
# eve p: event prototypes sen p: sentence prototype
def matching(self, obj p, phr p, eve p, sen p):

# normalize representation
obj p = F.normalize(obj p, p=2, dim=-1) # B × L × N o × D
phr p = F.normalize(phr p, p=2, dim=-1) # B × N p × D
eve p = F.normalize(eve p, p=2, dim=-1) # B × N e × D
sen p = F.normalize(sen p, p=2, dim=-1) # B × D

# Object-Phrase Prototype Matching
op logits = torch.einsum("apd,blod->ablpo", [phr p, obj p]) # B × B × L ×
N p × N o
op logits = op logits.max(3)[0] # B × B × L × N o
op logits = op logits.max(2)[0] # B × B × N o
op logits = op logits.sum(2) / self.obj num # B × B

# Event-Sentence Prototype Matching
es logits = torch.einsum("ad,bed->abe", [sen p, eve p]) # B × B × N e
es logits = es logits.max(2)[0] # B × B

return op logits, es logits

Table 2. Text-to-Video retrieval results on the YouCook2 dataset.

Method
Text → Video

R@1 ↑ R@5 ↑ R@10↑ MdR ↓ MnR ↓
TACo [17] 4.9 14.7 22.0 68.0 -
COOT [4] 5.9 16.7 24.8 49.7 -

CLIP4Clip [4] 8.3 23.3 33.4 26.0 134.3
TS2-Net [4] 10.2 29.1 39.0 18.0 120.4
ProST [4] 11.4 30.2 41.7 17.0 116.8

Table 3. Text-to-Video R@1 results with the post-process meth-
ods. ∗ refers the inverted softmax [3] and ‡ refers our Text-Video
Hungarian (TVH) post-processing strategy.

Method
Text → Video

MSRVTT-9k DiDeMo VATEX LSMDC
QB-Norm [1] 47.2 43.5 58.8 -
TS2-Net [9] 47.0 41.8 59.1 23.0
TS2-Net∗ 49.6 47.0 60.2 23.8
TS2-Net‡ 51.3 48.8 67.4 23.6
ProST 48.2 44.9 60.6 24.1
ProST∗ 49.9 48.2 61.4 24.5
ProST‡ 52.4 52.1 69.1 24.6

inverted softmax. Note that in the previous experiments of
the main manuscript, we did not use any post-processing
techniques to ensure fairness. Then, we introduce a very
simple post-processing strategy (TVH) on the text-video
retrieval task for the first time. The post-processing of the
similarity score matrix is defined as a bipartite maximum

Table 4. The ablation study on MSRVTT-9k to investigate the
configuration of the layer number Nfl of the frame decoder and
the layer number Nel of the event decoder.

{Nfl, Nel}
Text → Video

R@1 ↑ R@5 ↑ R@10↑ MdR ↓ MnR ↓
{1, 1} 46.3 72.8 82.0 2.0 13.2
{1, 2} 47.0 73.1 82.9 2.0 13.0
{1, 3} 47.4 73.5 82.6 2.0 12.8
{2, 1} 47.7 73.7 83.0 2.0 12.6
{2, 2} 48.2 74.6 83.4 2.0 12.4
{2, 3} 48.0 74.8 83.3 2.0 12.3
{3, 1} 47.1 73.3 83.1 2.0 12.8
{3, 2} 48.1 74.4 83.2 2.0 12.4
{3, 3} 47.8 74.0 82.9 2.0 12.8

matching problem, which can be solved by the Hungarian
algorithm [8]. The TVH strategy enables each text query to
find the corresponding unique video and the total similarity
score is maximized.

Tab. 3 shows that TVH outperforms the existing in-
verted softmax, especially on DiDeMo and VATEX. Our
ProST‡ also achieves better results, reaching 52.4%, 52.1%,
69.1%, 24.6% R@1 on MSRVTT-9k, DiDeMo, VATEX
and LSMDC. In particular, ProST‡ has the largest improve-
ment on VATEX, while the improvement on LSMDC is
moderate. This may be due to the high difficulty of the
LSMDC dataset, resulting in a large deviation between the
current similarity ranking and the correct ranking. It is dif-
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Figure 1. More visualization results of the object and event prototypes. We sample 12 frames in the video and object prototypes are shown
as highlighted response regions in the frame. Then, we show cross-attention event weights in a line graph. Best viewed in color.

Query 24: cartoons of a sponge, a squid and a starfish.
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Figure 2. Some failure text-video retrieval examples. We rank the retrieval results based on their similarity scores. Red box: the correctly
retrieved groundtruth video. Blue box: the incorrectly retrieved video by our model.

ficult to improve with simple post-processing.

Ablation study. We conduct experiments on various de-
coder layer configurations in Tab. 4. When the number
of decoder layers is configured as {1, 1}, the effect of the
model is poor. Other configurations result in good perfor-
mance. This may be because a single-layer transformer is
not enough to model complex spatio-temporal relations.

More visualization examples. As shown in Fig. 1, we

show more visualization results of object prototypes and
event prototypes. This further illustrates that ProST can
achieve good spatial local alignments and temporal dy-
namic event semantic alignments.

Fig. 2 displays two cases where our model fails to rank
the groundtruth video at the top. Nevertheless, we argue
that ProST may have retrieved the more relevant video in
these failure cases. For instance, for query 24, we retrieved



the cartoon about sponges, octopuses, and starfish at rank
1. However, this case is judged as the retrieval failure.
For query 842, the text description “dogs” refers to more
than one dog, and the videos we searched indeed match the
text description. However, the groundtruth video has only
one identical dog. We think that ProST may have the po-
tential to achieve better results after improving these non-
discriminative text descriptions.

4. Limitation

Similar to existing text-video retrieval methods [9, 5, 15,
2], our method is suitable for fine-grained ranking rather
than large-scale ranking. To pursue large-scale retrieval,
we can use the existing global embedding methods [10, 13]
combined with indexing algorithms [7, 11] for text-video
matching in the coarse ranking phase. Then, we utilize
ProST to perform further spatio-temporal matching on the
coarsely ranked Top-N instances in the fine-grained ranking
phase.
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son, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In NeurIPS, 2019. 1

[13] Mandela Patrick, Po-Yao Huang, Yuki Asano, Florian
Metze, Alexander Hauptmann, Joao Henriques, and Andrea
Vedaldi. Support-set bottlenecks for video-text representa-
tion learning. In ICLR, 2021. 4

[14] Milos Radovanovic, Alexandros Nanopoulos, and Mirjana
Ivanovic. Hubs in space: Popular nearest neighbors in high-
dimensional data. JMLR, 2010. 1

[15] Xiaohan Wang, Linchao Zhu, and Yi Yang. T2vlad: global-
local sequence alignment for text-video retrieval. In CVPR,
2021. 4

[16] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. MSR-VTT: A
large video description dataset for bridging video and lan-
guage. In CVPR, 2016. 1

[17] Jianwei Yang et al. Taco: Token-aware cascade contrastive
learning for video-text alignment. In ICCV, 2021. 2

[18] Luowei Zhou, Chenliang Xu, and Jason J Corso. Towards
automatic learning of procedures from web instructional
videos. In AAAI, 2018. 1


